Objective To automatically segment diabetic retinal exudation features from deep learning color fundus images. Methods An applied study. The method of this study is based on the U-shaped network model of the Indian Diabetic Retinopathy Image Dataset (IDRID) dataset, introduces deep residual convolution into the encoding and decoding stages, which can effectively extract seepage depth features, solve overfitting and feature interference problems, and improve the model's feature expression ability and lightweight performance. In addition, by introducing an improved context extraction module, the model can capture a wider range of feature information, enhance the perception ability of retinal lesions, and perform excellently in capturing small details and blurred edges. Finally, the introduction of convolutional triple attention mechanism allows the model to automatically learn feature weights, focus on important features, and extract useful information from multiple scales. Accuracy, recall, Dice coefficient, accuracy and sensitivity were used to evaluate the ability of the model to detect and segment the automatic retinal exudation features of diabetic patients in color fundus images. Results After applying this method, the accuracy, recall, dice coefficient, accuracy and sensitivity of the improved model on the IDRID dataset reached 81.56%, 99.54%, 69.32%, 65.36% and 78.33%, respectively. Compared with the original model, the accuracy and Dice index of the improved model are increased by 2.35% , 3.35% respectively. Conclusion The segmentation method based on U-shaped network can automatically detect and segment the retinal exudation features of fundus images of diabetic patients, which is of great significance for assisting doctors to diagnose diseases more accurately.
In deep learning-based image registration, the deformable region with complex anatomical structures is an important factor affecting the accuracy of network registration. However, it is difficult for existing methods to pay attention to complex anatomical regions of images. At the same time, the receptive field of the convolutional neural network is limited by the size of its convolution kernel, and it is difficult to learn the relationship between the voxels with far spatial location, making it difficult to deal with the large region deformation problem. Aiming at the above two problems, this paper proposes a cascaded multi-level registration network model based on transformer, and equipped it with a difficult deformable region perceptron based on mean square error. The difficult deformation perceptron uses sliding window and floating window techniques to retrieve the registered images, obtain the difficult deformation coefficient of each voxel, and identify the regions with the worst registration effect. In this study, the cascaded multi-level registration network model adopts the difficult deformation perceptron for hierarchical connection, and the self-attention mechanism is used to extract global features in the basic registration network to optimize the registration results of different scales. The experimental results show that the method proposed in this paper can perform progressive registration of complex deformation regions, thereby optimizing the registration results of brain medical images, which has a good auxiliary effect on the clinical diagnosis of doctors.
Although deep learning plays an important role in cell nucleus segmentation, it still faces problems such as difficulty in extracting subtle features and blurring of nucleus edges in pathological diagnosis. Aiming at the above problems, a nuclear segmentation network combined with attention mechanism is proposed. The network uses UNet network as the basic structure and the depth separable residual (DSRC) module as the feature encoding to avoid losing the boundary information of the cell nucleus. The feature decoding uses the coordinate attention (CA) to enhance the long-range distance in the feature space and highlights the key information of the nuclear position. Finally, the semantics information fusion (SIF) module integrates the feature of deep and shallow layers to improve the segmentation effect. The experiments were performed on the 2018 data science bowl (DSB2018) dataset and the triple negative breast cancer (TNBC) dataset. For the two datasets, the accuracy of the proposed method was 92.01% and 89.80%, the sensitivity was 90.09% and 91.10%, and the mean intersection over union was 89.01% and 89.12%, respectively. The experimental results show that the proposed method can effectively segment the subtle regions of the nucleus, improve the segmentation accuracy, and provide a reliable basis for clinical diagnosis.
Accurate segmentation of ground glass nodule (GGN) is important in clinical. But it is a tough work to segment the GGN, as the GGN in the computed tomography images show blur boundary, irregular shape, and uneven intensity. This paper aims to segment GGN by proposing a fully convolutional residual network, i.e., residual network based on atrous spatial pyramid pooling structure and attention mechanism (ResAANet). The network uses atrous spatial pyramid pooling (ASPP) structure to expand the feature map receptive field and extract more sufficient features, and utilizes attention mechanism, residual connection, long skip connection to fully retain sensitive features, which is extracted by the convolutional layer. First, we employ 565 GGN provided by Shanghai Chest Hospital to train and validate ResAANet, so as to obtain a stable model. Then, two groups of data selected from clinical examinations (84 GGN) and lung image database consortium (LIDC) dataset (145 GGN) were employed to validate and evaluate the performance of the proposed method. Finally, we apply the best threshold method to remove false positive regions and obtain optimized results. The average dice similarity coefficient (DSC) of the proposed algorithm on the clinical dataset and LIDC dataset reached 83.46%, 83.26% respectively, the average Jaccard index (IoU) reached 72.39%, 71.56% respectively, and the speed of segmentation reached 0.1 seconds per image. Comparing with other reported methods, our new method could segment GGN accurately, quickly and robustly. It could provide doctors with important information such as nodule size or density, which assist doctors in subsequent diagnosis and treatment.
Sleep stage classification is a necessary fundamental method for the diagnosis of sleep diseases, which has attracted extensive attention in recent years. Traditional methods for sleep stage classification, such as manual marking methods and machine learning algorithms, have the limitations of low efficiency and defective generalization. Recently, deep neural networks have shown improved results by the capability of learning complex pattern in the sleep data. However, these models ignore the intra-temporal sequential information and the correlation among all channels in each segment of the sleep data. To solve these problems, a hybrid attention temporal sequential network model is proposed in this paper, choosing recurrent neural network to replace traditional convolutional neural network, and extracting temporal features of polysomnography from the perspective of time. Furthermore, intra-temporal attention mechanism and channel attention mechanism are adopted to achieve the fusion of the intra-temporal representation and the fusion of channel-correlated representation. And then, based on recurrent neural network and inter-temporal attention mechanism, this model further realized the fusion of inter-temporal contextual representation. Finally, the end-to-end automatic sleep stage classification is accomplished according to the above hybrid representation. This paper evaluates the proposed model based on two public benchmark sleep datasets downloaded from open-source website, which include a number of polysomnography. Experimental results show that the proposed model could achieve better performance compared with ten state-of-the-art baselines. The overall accuracy of sleep stage classification could reach 0.801, 0.801 and 0.717, respectively. Meanwhile, the macro average F1-scores of the proposed model could reach 0.752, 0.728 and 0.700. All experimental results could demonstrate the effectiveness of the proposed model.
Cranial defects may result from clinical brain tumor surgery or accidental trauma. The defect skulls require hand-designed skull implants to repair. The edge of the skull implant needs to be accurately matched to the boundary of the skull wound with various defects. For the manual design of cranial implants, it is time-consuming and technically demanding, and the accuracy is low. Therefore, an informer residual attention U-Net (IRA-Unet) for the automatic design of three-dimensional (3D) skull implants was proposed in this paper. Informer was applied from the field of natural language processing to the field of computer vision for attention extraction. Informer attention can extract attention and make the model focus more on the location of the skull defect. Informer attention can also reduce the computation and parameter count from N2 to log(N). Furthermore,the informer residual attention is constructed. The informer attention and the residual are combined and placed in the position of the model close to the output layer. Thus, the model can select and synthesize the global receptive field and local information to improve the model accuracy and speed up the model convergence. In this paper, the open data set of the AutoImplant 2020 was used for training and testing, and the effects of direct and indirect acquisition of skull implants on the results were compared and analyzed in the experimental part. The experimental results show that the performance of the model is robust on the test set of 110 cases fromAutoImplant 2020. The Dice coefficient and Hausdorff distance are 0.940 4 and 3.686 6, respectively. The proposed model reduces the resources required to run the model while maintaining the accuracy of the cranial implant shape, and effectively assists the surgeon in automating the design of efficient cranial repair, thereby improving the quality of the patient’s postoperative recovery.
The synergistic effect of drug combinations can solve the problem of acquired resistance to single drug therapy and has great potential for the treatment of complex diseases such as cancer. In this study, to explore the impact of interactions between different drug molecules on the effect of anticancer drugs, we proposed a Transformer-based deep learning prediction model—SMILESynergy. First, the drug text data—simplified molecular input line entry system (SMILES) were used to represent the drug molecules, and drug molecule isomers were generated through SMILES Enumeration for data augmentation. Then, the attention mechanism in the Transformer was used to encode and decode the drug molecules after data augmentation, and finally, a multi-layer perceptron (MLP) was connected to obtain the synergy value of the drugs. Experimental results showed that our model had a mean squared error of 51.34 in regression analysis, an accuracy of 0.97 in classification analysis, and better predictive performance than the DeepSynergy and MulinputSynergy models. SMILESynergy offers improved predictive performance to assist researchers in rapidly screening optimal drug combinations to improve cancer treatment outcomes.
Precise segmentation of lung field is a crucial step in chest radiographic computer-aided diagnosis system. With the development of deep learning, fully convolutional network based models for lung field segmentation have achieved great effect but are poor at accurate identification of the boundary and preserving lung field consistency. To solve this problem, this paper proposed a lung segmentation algorithm based on non-local attention and multi-task learning. Firstly, an encoder-decoder convolutional network based on residual connection was used to extract multi-scale context and predict the boundary of lung. Secondly, a non-local attention mechanism to capture the long-range dependencies between pixels in the boundary regions and global context was proposed to enrich feature of inconsistent region. Thirdly, a multi-task learning to predict lung field based on the enriched feature was conducted. Finally, experiments to evaluate this algorithm were performed on JSRT and Montgomery dataset. The maximum improvement of Dice coefficient and accuracy were 1.99% and 2.27%, respectively, comparing with other representative algorithms. Results show that by enhancing the attention of boundary, this algorithm can improve the accuracy and reduce false segmentation.
Objective To evaluate the effect of visual and audiovisual distraction on anxiety and acceptance levels among patients undergoing colonoscopy. Methods A total of 180 consecutive patients undergoing colonoscopy were randomly divided into three groups: group A received visual distraction; group B received audiovisual distraction; and group C received routine care alone. Levels of anxiety and willingness to accept the same intervention if the procedure needed to be repeated were compared among the three groups. Results The reduction of anxiety score after colonoscopy in group A and group B was greater than that in group C, but the difference was not statistically significant. The rate of willingness to accept the same intervention if the procedure needed to be repeated was significantly different among the three groups: the rates for group A and group B were higher than for group C (Plt;0.05). Conclusions Both visual distraction and audiovisual distraction can significantly improve patients’ acceptance of colonoscopy. Visual distraction and audiovisual distraction have no significant effect on reducing anxiety.
Aiming at the problems of low accuracy and large difference of segmentation boundary distance in anterior cruciate ligament (ACL) image segmentation of knee joint, this paper proposes an ACL image segmentation model by fusing dilated convolution and residual hybrid attention U-shaped network (DRH-UNet). The proposed model builds upon the U-shaped network (U-Net) by incorporating dilated convolutions to expand the receptive field, enabling a better understanding of the contextual relationships within the image. Additionally, a residual hybrid attention block is designed in the skip connections to enhance the expression of critical features in key regions and reduce the semantic gap, thereby improving the representation capability for the ACL area. This study constructs an enhanced annotated ACL dataset based on the publicly available Magnetic Resonance Imaging Network (MRNet) dataset. The proposed method is validated on this dataset, and the experimental results demonstrate that the DRH-UNet model achieves a Dice similarity coefficient (DSC) of (88.01±1.57)% and a Hausdorff distance (HD) of 5.16±0.85, outperforming other ACL segmentation methods. The proposed approach further enhances the segmentation accuracy of ACL, providing valuable assistance for subsequent clinical diagnosis by physicians.