• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. 華西醫學期刊出版社
        作者
        • 標題
        • 作者
        • 關鍵詞
        • 摘要
        高級搜索
        高級搜索

        搜索

        找到 作者 包含"林靖" 1條結果
        • 基于非線性高階特征和超圖卷積神經網絡的阿爾茨海默癥分類

          阿爾茨海默癥(AD)是一種不可逆轉的大腦神經退化性疾病,會損害患者記憶力和認知能力。因此,AD診斷具有重要意義。大腦感興趣區域(ROI)之間往往是多個區域以非線性的方式協同交互,充分利用此類非線性高階交互特征有助于提高AD診斷分類的準確性。為此,提出基于非線性高階特征提取和三維超圖神經網絡相結合的AD計算機輔助診斷框架。首先針對ROI數據使用基于徑向基函數核的支持向量機回歸模型訓練出基估計器,再通過基于基估計器的遞歸特征消除算法提取功能性磁共振成像(fMRI)數據中的非線性高階特征,進而將特征構造成超圖,最后基于fMRI數據的四維時空特性搭建超圖卷積神經網絡模型來進行分類。阿爾茨海默癥神經影像倡議(ADNI)數據庫上的實驗結果表明,所提框架在AD/正常對照(NC)分類任務上的效果相較于Hyper Graph Convolutional Network(HyperGCN)框架提高了8%,相較于傳統二維線性特征提取方法提高了12%。綜上,本文框架在AD分類效果上較主流深度學習方法有所提升,可為AD計算機輔助診斷提供有效依據。

          發表時間: 導出 下載 收藏 掃碼
        共1頁 上一頁 1 下一頁

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜