深度學習在細胞核分割中具有重要作用,但在病理診斷中仍面臨著細胞核圖像的細微特征難以提取、核邊緣模糊等問題。針對上述問題,本文提出了一種結合注意力機制的細胞核分割網絡。該網絡使用U型網絡(UNet)作為基本結構,以深度可分離殘差卷積(DSRC)模塊作為特征編碼,避免丟失細胞核邊界信息;特征解碼引入坐標注意力(CA)加強特征空間上遠程距離,突出細胞核位置的關鍵信息;最后,設計語義信息融合(SIF)模塊整合深淺層特征,改善分割效果。在2018數據科學碗(DSB2018)和三陰乳腺癌(TNBC)數據集上分別進行實驗,所提方法的精確率在兩個數據集上分別為92.01%、89.21%,靈敏度為90.09%、91.10%,平均交并比為89.01%、89.12%。實驗結果表明,本文所提方法能有效分割細胞核細微區域,提升分割準確度,為臨床診斷提供可靠依據。