針對腦機接口(BCI)系統中的多通道非平穩腦電(EEG)信號和腦磁(MEG)信號, 本文提出一種基于多通道經驗模式分解(MEMD)與功率特征結合的信號特征提取算法。首先將多通道腦信號經MEMD算法分解為一系列多尺度多元固有模態函數(IMF)近似平穩分量, 然后對每個IMF分量提取功率特征, 并利用主成分分析(PCA)降維處理, 最后使用線性判別分析分類器對信號特征分類。實驗采用第三次和第四次國際BCI競賽的數據進行驗證, 對皮層EEG信號和MEG信號運動想象任務的識別正確率分別達到92.0%和46.2%, 均位于競賽第一名水平。實驗結果表明本文所提方法有較好有效性和穩定性, 為腦信號特征提取提供了新思路。