1. |
Hench LL, Wilson J. An introduction to bioceramics. New Jersey: World Scientific Publishing Co Pte Ltd, 1993: 1-24.
|
2. |
Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 1999, 20(23-24): 2287-2303.
|
3. |
Xu HH, Burgueral EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials, 2007, 28(26): 3786-3796.
|
4. |
Kruyt MC, Persson C, Johansson G, et al. Towards injectable cell-based tissue-engineered bone: the effect of different calcium phosphate microparticles and pre-culturing. Tissue Eng, 2006, 12(2): 309-317.
|
5. |
Van Lieshout EM, Van Kralingen GH, El-Massoudi Y, et al. Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskelet Disord, 2011, 12: 34.
|
6. |
Wang X, Ye J, Wang Y, et al. Hydration mechanism of a novel PCCP + DCPA cement system. J Mater Sci Mater Med, 2008, 19(2): 813-816.
|
7. |
Qi X, Ye J, Wang Y. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly (lactide-co-glycolide)microspheres. Acta Biomater, 2008, 4(6): 1837-1845.
|
8. |
Hollinger JO, Kleinechmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg, 1990, 1(1): 60-68.
|
9. |
Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res, 1986, (205): 299-308.
|
10. |
Fernández E, Vald MD, Gel MM, et al. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures. Biomaterials, 2005, 26(17): 3395-3404.
|
11. |
Fernández E, Sarda S, Hamcerencu M, et al. High-strength apatitic cement by modification with superplasticizers. Biomaterials, 2005, 26(15): 2289-2296.
|
12. |
Manjubala I, Sivakumar M, Sureshkumar RV, et al. Bioactive and osseointegration study of calcium phosphate ceramic of different chemical composition. J Biomed Mater Res, 2002, 63(2): 200-208.
|
13. |
Apelt D, Theiss F, El-Warrak AO, et al. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials, 2004, 25(7-8): 1439-1451.
|
14. |
BohnerM, Theiss F, Apelt D, et al. Compositional changes of adicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials, 2003, 24(20): 3463-3474.
|
15. |
Ruhé PQ, Hedberg EL, Padron NT, et al. Biocompatibility and degradation of poly (DL-lactic-co-glycolic acid)/calcium phosphate cement composites. J Biomed Mater Res A, 2005, 74(4): 533-544.
|
16. |
Simon CG Jr, Khatri CA, Wight SA, et al. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly (lactide-co-glycolide)microspheres. J Orthop Res, 2002, 20(3): 473-482.
|
17. |
鄒華章, 廖威明, 段昕, 等. 新型可注射磷酸鈣骨水泥在椎體后凸成形術中的生物力學評價. 中華生物醫學工程雜志, 2011, 17(2): 151-155.
|
18. |
Flautre B, Delecourt C, Blary MC, et al. Volume effect on biological properties of a calcium phosphate hydraulic cement: Experimental study in sheep. Bone, 1999, 25(2 Suppl): 35s-39s.
|
19. |
李朵, 魏啟幼, 范松青, 等. 不脫鈣骨組織包埋技術的改進. 臨床與實驗病理學雜志, 2005, 21(6): 731-733.
|
20. |
LeGeros RZ, Lin S, Rohanizadeh R, et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med, 2003, 14(3): 201-209.
|
21. |
Flautre B, Descamps M, Delecourt C, et al. Pores HA ceramic for bone replacement: role of the pores and interconnections—experimental study in rabbit. J Mater Sci Mater Med, 2001, 12(8): 679-682.
|