1. |
Elsaid KA, Machan JT, Waller K, et al. The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum, 2009, 60(10): 2997-3006.
|
2. |
Hendren L, Beeson P. A review of the differences between normal and osteoarthritis articular cartilage in human knee and ankle joints. The Foot, 2009, 19(3): 171-176.
|
3. |
Wei L, Sun X, Kanbe K, et al. Chondrocyte death induced by pathological concentration of chemokine Stromal cell-derived factor-1. J Rheumatol, 2006, 33(9): 1818-1826.
|
4. |
Lisgnoli G, Toneguzzi S, Piacentini A, et al. CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. J Cell Physiol, 2006, 206(1): 78-85.
|
5. |
Ross JM, Sherwin AF, Poole CA. In vitro culture of enzymatieally isolated ehondron: a possible model for the initiation of osteoarthritis. J Anat, 2006, 209(6): 793-806.
|
6. |
Altman RD. The classification of osteoarthritis. J Rheumatol Suppl, 1995, 43: 42-43.
|
7. |
Flannery CR, Little CB, Caterson B, et al. Effects of culture conditions and exposure to catabolic stimulators (IL-1 and retinoic acid) on the expression of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes. Matrix Biol, 1999, 18(3): 225-237.
|
8. |
Mitchell PG, Mogna HA, Reeves LM, et al. Cloning, expression and type Ⅱ collagenolytic activity of matrix metalloprpteinase-13 from human osteoarthritis cartilage. J Clin Invest, 1996, 97(3): 761-768.
|
9. |
班吉鶴, 周利武, 毛廣平, 等. 應用蛋白質芯片檢測骨性關節炎患者基質金屬蛋白酶-13的初步研究. 醫學研究生學報, 2008, 21(8): 836-838, 844.
|
10. |
Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum, 2002, 46(1): 130-137.
|
11. |
D’APuzzo M, Rolink A, Loetscher M, et al. The chemokine SDF-l, stromal cell-derivcd factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol, 1997, 27(7): 1788-1793.
|
12. |
Santiago B, Baleux F, Palao G, et al. CXCL12 is displayed by rheumatoid endothelial cells through its basic amino-terminal motif on heparan sulfate proteoglycans. Arthritis Res Ther, 2006, 8(2): R43.
|
13. |
Chiu YC, Yang RS, Hsieh KH, et al. Stromal cell-derived factor-1 induces matrix metalloprotease-13 expression in human chondrocytes. Mol Pharmacol, 2007, 72(3): 695-703.
|
14. |
Matthys P, Hatse S, Vermeire, et al. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor deficient mice. J Immunology, 2001, 167(8): 4686-4692.
|
15. |
Blanco J, Barretina J, Henson G, et al. The CXCR4 antagonist AMD3100 efficiently inhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptosis. Antimicrob Agents Chemother, 2000, 44(1): 51-56.
|
16. |
Hatse S, Princen K, Bridger G, et al. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett, 2002, 527(1-3): 255-262.
|
17. |
De Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov, 2003, 2(7): 581-587.
|
18. |
李曉林, 李彥林, 馬珂, 等. SDF-1/CXCR4信號通路在骨性關節炎病理進程中的作用. 中國組織工程研究與臨床康復, 2011, 15(15): 2805-2808.
|
19. |
Tamamura H, Tsutsumi H, Masuno H, et al. Development of low molecular weight CXCR4 antagonists by exploratory structural tuning of cyclic tetra and pentapeptide-scaffolds towards the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Curr Med Chem, 2007, 14(1): 93-102.
|
20. |
De Klerck B, Geboes L, Hatse S, et al. Pro-inflammatory properties of stromal cell-derived factor-1 (CXCL12) in collagen-induced arthritis. Arthritis Res Ther, 2005, 7(6): R1208-1220.
|