1. |
Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis, 2009, 67(2): 182-188.
|
2. |
Wooley PH, Schwarz EM. Aseptic loosening. Gene Ther, 2004, 11(4): 402-407.
|
3. |
Jell GM, Al-Saffar N. Does a pro-angiogenic state exist in the bone-implant interface of aseptically loosened joint prosthesis? J Mater Sci Mater Med, 2001, 12(10-12): 1069-1073.
|
4. |
Spanogle JP, Miyanishi K, Ma T, et al. Comparison of VEGF-producing cells in periprosthetic osteolysis. Biomaterials, 2006, 27(21): 3882-3887.
|
5. |
Miyanishi K, Trindade MC, Ma T, et al. Periprosthetic osteolysis: induction of vascular endothelial growth factor from human monocyte/macrophages by orthopaedic biomaterial particles. J Bone Miner Res, 2003, 18(9): 1573-1583.
|
6. |
Ho QT, Kuo CJ. Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol, 2007, 39(7-8): 1349-1357.
|
7. |
程明, 戴閩, 劉虎誠, 等. 真空球磨法體外制備人工關節金屬磨損顆粒. 中國矯形外科雜志, 2010, 18(8): 678-681.
|
8. |
Ren W, Yang SY, Wooley PH. A novel murine model of orthopaedic wear-debris associated osteolysis. Scand J Rheumatol, 2004, 33(5): 349-57.
|
9. |
趙松, 程濤, 彭曉春, 等. NF-κB受體激活因子配體抗體防治人工關節無菌性松動的實驗研究. 中國修復重建外科雜志, 2011, 25(6): 656-660.
|
10. |
Ren WP, Markel, DC, Zhang R, et al. Association between UHMWPE particle-induced inflammatory osteoclastogenesis and expression of RANKL, VEGF, and Flt-1 in vivo. Biomaterials, 2006, 27(30): 5161-5169.
|
11. |
Ren W, Zhang R, Wu B, et al. Effects of SU5416 and a vascular endothelial growth factor neutralizing antibody on wear debris-induced inflammatory osteolysis in a mouse model. J Inflamm Res, 2011, 4: 29-38.
|
12. |
Markel DC, Zhang R, Shi T, et al. Inhibitory effects of erythromycin on wear debris-induced VEGF/Flt-1 gene production and osteolysis. Inflamm Res, 2009. [Epub ahead of print].
|
13. |
Zhang W, Peng X, Cheng T, et al. Vascular endothelial growth factor gene silencing suppresses wear debris-induced inflammation. Int Orthop, 2011, 35(12): 1883-1888.
|
14. |
Zhang Q, Guo RL, Lu Y, et al. VEGF-C, a lymphatic growth factor, is a RANKL target gene in osteoclasts that enhances osteoclastic bone resorption through an autocrine mechanism. J Biol Chem, 2008, 283 (19): 13491-13499.
|
15. |
Yang Q, McHugh KP, Patntirapong S, et al. VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Matrix Biol, 2008, 27(7): 589-599.
|
16. |
Guan H, Zhou Z, Cao Y, et al. VEGF165 promotes the osteolytic bone destruction of ewing’s sarcoma tumors by upregulating RANKL. Oncol Res, 2009, 18(2-3): 117-125.
|
17. |
Bäuerle T, Hilbig H, Bartling S, et al. Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia, 2008, 10 (5): 511-520.
|
18. |
Hamilton EP, Blackwell KL. Safety of bevacizumab in patients with metastatic breast cancer. Oncology, 2011, 80(5-6): 314-325.
|
19. |
Langlois J, Hamadouche M. New animal models of wear-particle osteolysis. Int Orthop, 2011, 35(2): 245-251.
|
20. |
戴閩, 程明, 劉虎誠, 等. 不同濃度金屬磨損顆粒對破骨細胞體外分化的影響. 中國矯形外科雜志, 2011, 19(4): 316-319.
|
21. |
Zhang L, Jia TH, Chong AC, et al. Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model. Gene Ther, 2010, 17(10): 1262-1269.
|