目的 綜述可降解鎂合金作為骨植入材料的體內研究進展。 方法查閱近年有關可降解鎂合金在骨科領域體內研究的相關文獻,并進行總結。 結果鎂合金能通過化學腐蝕在體內緩慢降解,極具潛力成為骨植入材料。近年在鎂合金生物相容性、降解速度、植入材料-骨組織界面強度等方面的研究取得了較大進展,但鎂合金的體內降解機制、對生物體的作用尤其是遠期影響還缺乏系統研究,鎂合金的體內降解速度亦未得到有效控制。 結論可降解鎂合金作為骨植入材料具有巨大潛力,但在應用于臨床前仍需進行深入、系統的體內研究。
引用本文: 齊崢嶸,張強,殷毅,王巖. 可降解鎂合金作為骨植入材料的體內研究進展. 中國修復重建外科雜志, 2012, 26(11): 1381-1386. doi: 復制
1. | 4 Wong HM, Yeung KWK, Lam KO, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31(8): 2084-2096. 5 Witte F, Reifenrath J, Mueller PP, et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materialwissenschaft Und Werkstofftechnik, 2006, 37(6): 504-508. 6 Huse EC. A new ligature? Chicago Med J Exam, 1878, XXXVII: 172. |
2. | 8 Troitskii VV, Tsitrin DN. The resorbing metallic alloy ‘Osteosinthezit’ as material for fastening broken bone. Khirurgiia, 1944, 8: 41-44. 9 Znamenskii MS. Metallic osteosynthesis by means of an apparatus made of resorbing metal. Khirurgiia, 1945, 12: 60-63. |
3. | 10 McBride ED. Absorbable metal in bone surgery. J Am Med Assoc, 1938, 11(27): 2464-2467. 11 Ren YB, Huang JJ, Yang K, et al. Study of bio-corrosion of pure magnesium. Acta Metallurgica Sinica, 2005, 41(11): 1228-1232. 12 Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557-3563. 13 Kaesel V, Tai PT, Bach FW, et al. Approach to control the corrosion of magnesium by alloying. Proceedings of the sixth international coference magnesium alloys and their application. New York: Wiley-Vch, 2004: 534-539. 14 Payr E. Beiträge zur Technik der Blutdefäss und Nervennaht nebst Mittheilungen über die Verevendung eines resorbibaren Metalles in der Chirurgie. Arch Klin Chir, 1900, 62: 67-93. 15 Payr E. Ueber Verwendung von Magnesium zur Behandlung von Blutgefässerkrankungen. Deut Z Chir, 1902, 63: 503-511. 16 Groves E. An experimental study of the operative treatment of fractures. Br J Surg, 1913, 1(3): 438-501. 17 Verbrugge J. La tolérance du tissu osseux vis-à-vis du magnésium métallique. Presse Med, 1933, 55: 1112-1114. |
4. | 18 Nogara G. Sulla tolleranza dell’ osso verso i metalli riassorbibili magnesio ed electron. Arch Ital Chir, 1939, 56(5): 459-478. 19 Maier O. Über die Verwendbarkeit von Leichtmetallen in der Chirurgie (metallisches Magnesium als Reizmittel zur Knochenneubildung). Deut Z Chir, 1940, 253(8-9): 552-556. 20 Xue D, Yun Y, Tan Z, et al. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. J Mater Sci Technol, 2012, 28(3): 261-267. 21 Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa 0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomaterialia, 2011, 7(3): 1421-1428. 22 Witte F, Fischer J, Nellesen J, et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomaterialia, 2010, 6(5): 1792-1799. 23 Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A, 2007, 83(3): 703-711. 24 Rosalbino F, De Negri S, Saccone A, et al. Bio-corrosion characterization of Mg-Zn-X (X=Ca, Mn, Si) alloys for biomedical applications. J Materi Sci Med, 2010, 21(4): 1091-1098. 25 Chen S, Guan S, Li W, et al. In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition. J Biomed Materi Res B Appl Biomater, 2011. [Epub ahead of print] 26 Huehnerschulte TA, Reifenrath J, von Rechenberg B, et al. In vivo assessment of the host reactions to the biodegradation of the two novel magnesium alloys ZEK100 and AX30 in an animal model. Biomed Eng Online, 2012, 11: 14. 27 Häenzi AC, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater, 2010, 6(5): 1824-1833. 28 Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater, 2012, 8(6): 2360-2374. 29 Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J Mater Sci Mater Med, 2012, 23(3): 805-812. |
5. | 30 Persaud-Sharma D, McGoron A. Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng, 2012, 12: 25-39. 31 Song G, Atrens A, Stjohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros Sci, 1997, 39(5): 855-875. 32 Simaranov AY, Sokolova TI, Marshakov AI, et al. Corrosion-electrochemical behavior of magnesium in acidic media, containing oxidants. Prot Metal, 1991, 27(3): 329-334. 33 Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater, 2010, 6(2): 626-640. |
6. | 34 Zhang E, Xu L, Yu G, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A, 2009, 90(3): 882-893. 35 Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013-1018. 36 Duygulu O, Kaya RA, Oktay G, et al. Investigation on the potential of magnesium alloy AZ31 as a bone implant. Mater Sci Forum, 2007: 546-549. 37 Castellani C, Lindtner RA, Hausbrandt P, et al. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater, 2011, 7(1): 432-440. 38 Khan MA, Williams RL, Williams DF. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials, 1999, 20(7): 631-637. 39 Ku CH, Pioletti DP, Browne M, et al. Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Biomaterials, 2002, 23(6): 1447-1454. 40 Nakamura Y, Tsumura Y, Tonogai Y, et al. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam Appl Toxicol, 1997, 37(2): 106-116. 41 Song GL, St John D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. J Light Met, 2002, 2(1): 1-16. 42 Fan Y, Wu GH, Zhai C. Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy. Mater Sci Eng A, 2006, 433(1-2): 208-215. |
7. | 43 Gupta R, Bienenstock H, Morano P, et al. Tuberculosis of sacroiliac joint: an unusual presentation. J Natl Med Assoc, 2005, 97(8): 1174-1176. 44 Witte F, Hort F, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci, 2008, 12(5-6): 63-72. |
8. | 45 Song GL. Control of biodegradation of biocompatible magnesium alloys. Corros Sci, 2007, 49(4): 1696-1701. 46 Shi Z, Song GL, Atrens A. Corrosion resistance of anodised single-phase Mg alloys. Surf Coat Technol, 2006, 201(1-2): 492-503. |
9. | 47 Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother, 2003, 57(9): 399-411. 48 Rosenberg K, Olsson H, Morgelin M, et al. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem, 1998, 273(32): 20397-20403. |
10. | 49 Zorin SN, Bayarzhargal M, Gmoshinski? IV, et al. Multipurpose assessment of organic forms of essential trace elements: zinc, copper, manganese, chromium in vitro and in vivo experiments. Vopr Pitan, 2007, 76(5): 74-79. 50 Bock NA, Paiva FF, Nascimento GC, et al. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Res, 2008, 1198: 160-170. 51 Yamasaki Y, Yoshida Y, Okazaki M, et al. Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials, 2003, 24(27): 4913-4920. 52 Yamasaki Y, Yoshida Y, Okazaki M, et al. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res, 2002, 62(1): 99-105. 53 Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res, 2002, 62(2): 175-184. 54 Janning C, Willbold E, Vogt C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater, 2010, 6(5): 1861-1868. 55 Zreiqat H, Valenzuela SM, Nissan BB, et al. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials, 2005, 26(36): 7579-7586. |
11. | 57 Erdmann N, Bondarenko A, Hewicker-Trautwein M, et al. Evaluation of the soft tissue biocompatibility of MgCa 0.8 and surgical steel 316L in vivo: a comparative study in rabbits. Biomed Eng Online, 2010, 9: 63. 58 Xu L, Pan F, Yu G, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009, 30(8): 1512-1523. |
12. | 59 Gu XN, Li N, Zhou WR, et al. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. Acta Biomaterialia, 2011, 7(4): 1880-1889. 60 Uchiyama H, Yamato M, Sasaki R, et al. In vivo 3D analysis with micro-computed tomography of rat calvaria bone regeneration using periosteal cell sheets fabricated on temperature-responsive culture dishes. J Tissue Eng Regen Med, 2011, 5(6): 483-490. |
13. | |
14. | |
15. | |
16. | |
17. | |
18. | |
19. | |
20. | |
21. | |
22. | |
23. | |
24. | |
25. | |
26. | |
27. | |
28. | |
29. | |
30. | |
31. | |
32. | |
33. | |
34. | |
35. | |
36. | |
37. | |
38. | |
39. | |
40. | |
41. | |
42. | |
43. | |
44. | |
45. | |
46. | |
47. | |
48. | |
49. | |
50. | |
51. | |
52. | |
53. | |
54. | |
55. | |
56. | Niki Y, Matsumoto H, Suda Y, et al. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials, 2003, 24(8): 1447-1457. |
57. | Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728-1734. |
58. | Han HS, Kim YY, Kim YC, et al. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model. Metals and Materials International, 2012, 18(2): 243-247. |
59. | Lambotte A. L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse. Bull Mém Soc Nat Chir, 1932, 28: 1325-1334. |
60. | Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329-1344. |
- 1. 4 Wong HM, Yeung KWK, Lam KO, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31(8): 2084-2096. 5 Witte F, Reifenrath J, Mueller PP, et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materialwissenschaft Und Werkstofftechnik, 2006, 37(6): 504-508. 6 Huse EC. A new ligature? Chicago Med J Exam, 1878, XXXVII: 172.
- 2. 8 Troitskii VV, Tsitrin DN. The resorbing metallic alloy ‘Osteosinthezit’ as material for fastening broken bone. Khirurgiia, 1944, 8: 41-44. 9 Znamenskii MS. Metallic osteosynthesis by means of an apparatus made of resorbing metal. Khirurgiia, 1945, 12: 60-63.
- 3. 10 McBride ED. Absorbable metal in bone surgery. J Am Med Assoc, 1938, 11(27): 2464-2467. 11 Ren YB, Huang JJ, Yang K, et al. Study of bio-corrosion of pure magnesium. Acta Metallurgica Sinica, 2005, 41(11): 1228-1232. 12 Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557-3563. 13 Kaesel V, Tai PT, Bach FW, et al. Approach to control the corrosion of magnesium by alloying. Proceedings of the sixth international coference magnesium alloys and their application. New York: Wiley-Vch, 2004: 534-539. 14 Payr E. Beiträge zur Technik der Blutdefäss und Nervennaht nebst Mittheilungen über die Verevendung eines resorbibaren Metalles in der Chirurgie. Arch Klin Chir, 1900, 62: 67-93. 15 Payr E. Ueber Verwendung von Magnesium zur Behandlung von Blutgefässerkrankungen. Deut Z Chir, 1902, 63: 503-511. 16 Groves E. An experimental study of the operative treatment of fractures. Br J Surg, 1913, 1(3): 438-501. 17 Verbrugge J. La tolérance du tissu osseux vis-à-vis du magnésium métallique. Presse Med, 1933, 55: 1112-1114.
- 4. 18 Nogara G. Sulla tolleranza dell’ osso verso i metalli riassorbibili magnesio ed electron. Arch Ital Chir, 1939, 56(5): 459-478. 19 Maier O. Über die Verwendbarkeit von Leichtmetallen in der Chirurgie (metallisches Magnesium als Reizmittel zur Knochenneubildung). Deut Z Chir, 1940, 253(8-9): 552-556. 20 Xue D, Yun Y, Tan Z, et al. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. J Mater Sci Technol, 2012, 28(3): 261-267. 21 Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa 0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomaterialia, 2011, 7(3): 1421-1428. 22 Witte F, Fischer J, Nellesen J, et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomaterialia, 2010, 6(5): 1792-1799. 23 Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A, 2007, 83(3): 703-711. 24 Rosalbino F, De Negri S, Saccone A, et al. Bio-corrosion characterization of Mg-Zn-X (X=Ca, Mn, Si) alloys for biomedical applications. J Materi Sci Med, 2010, 21(4): 1091-1098. 25 Chen S, Guan S, Li W, et al. In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition. J Biomed Materi Res B Appl Biomater, 2011. [Epub ahead of print] 26 Huehnerschulte TA, Reifenrath J, von Rechenberg B, et al. In vivo assessment of the host reactions to the biodegradation of the two novel magnesium alloys ZEK100 and AX30 in an animal model. Biomed Eng Online, 2012, 11: 14. 27 Häenzi AC, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater, 2010, 6(5): 1824-1833. 28 Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater, 2012, 8(6): 2360-2374. 29 Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J Mater Sci Mater Med, 2012, 23(3): 805-812.
- 5. 30 Persaud-Sharma D, McGoron A. Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng, 2012, 12: 25-39. 31 Song G, Atrens A, Stjohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros Sci, 1997, 39(5): 855-875. 32 Simaranov AY, Sokolova TI, Marshakov AI, et al. Corrosion-electrochemical behavior of magnesium in acidic media, containing oxidants. Prot Metal, 1991, 27(3): 329-334. 33 Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater, 2010, 6(2): 626-640.
- 6. 34 Zhang E, Xu L, Yu G, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A, 2009, 90(3): 882-893. 35 Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013-1018. 36 Duygulu O, Kaya RA, Oktay G, et al. Investigation on the potential of magnesium alloy AZ31 as a bone implant. Mater Sci Forum, 2007: 546-549. 37 Castellani C, Lindtner RA, Hausbrandt P, et al. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater, 2011, 7(1): 432-440. 38 Khan MA, Williams RL, Williams DF. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials, 1999, 20(7): 631-637. 39 Ku CH, Pioletti DP, Browne M, et al. Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Biomaterials, 2002, 23(6): 1447-1454. 40 Nakamura Y, Tsumura Y, Tonogai Y, et al. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam Appl Toxicol, 1997, 37(2): 106-116. 41 Song GL, St John D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. J Light Met, 2002, 2(1): 1-16. 42 Fan Y, Wu GH, Zhai C. Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy. Mater Sci Eng A, 2006, 433(1-2): 208-215.
- 7. 43 Gupta R, Bienenstock H, Morano P, et al. Tuberculosis of sacroiliac joint: an unusual presentation. J Natl Med Assoc, 2005, 97(8): 1174-1176. 44 Witte F, Hort F, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci, 2008, 12(5-6): 63-72.
- 8. 45 Song GL. Control of biodegradation of biocompatible magnesium alloys. Corros Sci, 2007, 49(4): 1696-1701. 46 Shi Z, Song GL, Atrens A. Corrosion resistance of anodised single-phase Mg alloys. Surf Coat Technol, 2006, 201(1-2): 492-503.
- 9. 47 Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother, 2003, 57(9): 399-411. 48 Rosenberg K, Olsson H, Morgelin M, et al. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem, 1998, 273(32): 20397-20403.
- 10. 49 Zorin SN, Bayarzhargal M, Gmoshinski? IV, et al. Multipurpose assessment of organic forms of essential trace elements: zinc, copper, manganese, chromium in vitro and in vivo experiments. Vopr Pitan, 2007, 76(5): 74-79. 50 Bock NA, Paiva FF, Nascimento GC, et al. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Res, 2008, 1198: 160-170. 51 Yamasaki Y, Yoshida Y, Okazaki M, et al. Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials, 2003, 24(27): 4913-4920. 52 Yamasaki Y, Yoshida Y, Okazaki M, et al. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res, 2002, 62(1): 99-105. 53 Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res, 2002, 62(2): 175-184. 54 Janning C, Willbold E, Vogt C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater, 2010, 6(5): 1861-1868. 55 Zreiqat H, Valenzuela SM, Nissan BB, et al. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials, 2005, 26(36): 7579-7586.
- 11. 57 Erdmann N, Bondarenko A, Hewicker-Trautwein M, et al. Evaluation of the soft tissue biocompatibility of MgCa 0.8 and surgical steel 316L in vivo: a comparative study in rabbits. Biomed Eng Online, 2010, 9: 63. 58 Xu L, Pan F, Yu G, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009, 30(8): 1512-1523.
- 12. 59 Gu XN, Li N, Zhou WR, et al. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. Acta Biomaterialia, 2011, 7(4): 1880-1889. 60 Uchiyama H, Yamato M, Sasaki R, et al. In vivo 3D analysis with micro-computed tomography of rat calvaria bone regeneration using periosteal cell sheets fabricated on temperature-responsive culture dishes. J Tissue Eng Regen Med, 2011, 5(6): 483-490.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56. Niki Y, Matsumoto H, Suda Y, et al. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials, 2003, 24(8): 1447-1457.
- 57. Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728-1734.
- 58. Han HS, Kim YY, Kim YC, et al. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model. Metals and Materials International, 2012, 18(2): 243-247.
- 59. Lambotte A. L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse. Bull Mém Soc Nat Chir, 1932, 28: 1325-1334.
- 60. Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329-1344.