1. |
Burgel PR,Nadel JA. Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium. Thorax,2004,59:992-996.
|
2. |
Puddicombe SM,Polosa R,Richter A,et al. Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J,2000,14:1362-1374.
|
3. |
Denning DW,O’Driscoll BR,Hogaboam CM,et al. The link between fungi and severe asthma:a summary of the evidence. Eur Respir J,2006,27:615-626.
|
4. |
Gao FS,Qiao JO,Zhang Y,Jin XQ. Chronic intranasal administration of Aspergillus fumigatus spores leads to aggravation of airway inflammation and remodeling in asthmatic rats. Respirology,2009,14:360-370.
|
5. |
Palmans E,Kips JC,Pauwels RA. Prolonged allergen exposure induces structural airway changes in sensitized rats. Am J Respir Crit Care Med,2000,161:627-635.
|
6. |
高福生,龍飛,祁卉卉,等. 反復吸入煙曲霉孢子對慢性阻塞性肺疾病大鼠氣道炎癥和重構的影響. 中國呼吸和危重監護雜志,2008,7:205-209.
|
7. |
Glaab T,Mitzner W,Braun A,et al. Repetitive measurements of pulmonary mechanics to inhaled cholinergic challenge in spontaneously breathing mice. J Appl Physiol,2004,97:1104-1111.
|
8. |
Sumi Y,Foley S,Daigle S,et al. Structural changes and airway remodelling in occupational asthma at a mean interval of 14 years after cessation of exposure. Clin Exp Allergy,2007,37:1781-178.
|
9. |
Snibson KJ,Bischof RJ,Slocombe RF,et al. Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite. Clin Exp Allergy,2005,35:146-152.
|
10. |
Leigh R,Ellis R,Wattie J,et al. Dysfunction and remodeling of the mouse airway persist after resolution of acute allergen-induced airway inflammation. Am J Respir Cell Mol Biol,2002,27:526-535.
|
11. |
Ou XM,Feng YL,Wen FQ,et al. Macrolides attenuate mucus hypersecretion in rat airways through inactivation of NF-?B. Respirology,2008,13:63-72.
|
12. |
Engelhart S,Hanfland J,Glasmacher A,et al. Impact of portable air filtration units on exposure of haematology-oncology patients to airborne Aspergillus fumigatus spores under field conditions. J Hosp Infect,2003,54:300-304.
|
13. |
Rivera A,Hohl T,Pamer EG. Immune response to Aspergillus fumigatus infections. Biol Blood Marrow Transplant,2006,12:47-49.
|
14. |
Holgate ST,Lackie P,Wilson S,et al. Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma. Am J Respir Crit Care Med,2000,162:S113-S117.
|
15. |
Holgate ST. The airway epithelium is central to the pathogenesis of asthma. Allergol Int,2008,57:1-10.
|
16. |
Kauffman HF,Tomee JF,van de Riet MA,et al. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol,2000,105:1185-1193.
|
17. |
Kohri K,Ueki IF,Shim JJ,et al. Pseudomonas aeruginosa induces MUC5AC production via epidermal growth factor receptor. Eur Respir J,2002,20:1263-1270.
|
18. |
Shao MX,Ueki IF,Nadel JA. Tumor necrosis factor alpha-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA,2003,100:11618-11623.
|
19. |
Takeyama K,Jung B,Shim JJ,et al. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol Lung Cell Mol Physiol,2001,280:L165-172.
|
20. |
Takeyama K,Dabbagh K,Jeong Shim J,et al. Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor:role of neutrophils. J Immunol,2000,164:1546-1552.
|
21. |
Shim JJ,Dabbagh K,Ueki IF,et al. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am J Physiol Lung Cell Mol Physiol,2001,280:L134-140.
|
22. |
Thai P,Loukoianov A,Wachi S,et al. Regulation of airway mucin gene expression. Annu Rev Physiol,2008,70:405-429.
|
23. |
Takeyama K,Tamaoki J,Kondo M,et al. Role of epidermal growth factor receptor in maintaining airway goblet cell hyperplasia in rats sensitized to allergen. Clin Exp Allergy,2008,38:857-865.
|