| 1. |
Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev, 2016, 5(1): 210.
|
| 2. |
Marshall IJ, Kuiper J, Wallace BC. RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials. J Am Med Inform Assoc, 2016, 23(1): 193-201.
|
| 3. |
Harrison H, Griffin SJ, Kuhn I, et al. Software tools to support title and abstract screening for systematic reviews in healthcare: an evaluation. BMC Med Res Methodol, 2020, 20(1): 7.
|
| 4. |
Henderson LK, Craig JC, Willis NS, et al. How to write a Cochrane systematic review. Nephrology (Carlton), 2010, 15(6): 617-624.
|
| 5. |
Suurmond R, van Rhee H, Hak T. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis. Res Synth Methods, 2017, 8(4): 537-553.
|
| 6. |
Kohl C, Mcintosh E J, Unger S, et al. Online tools supporting the conduct and reporting of systematic reviews and systematic maps: a case study on CADIMA and review of existing tools. Environ Evid, 2018, 7: 1-17.
|
| 7. |
EPPI-Centre. EPPI-Reviewer 4: software for research synthesis. London: Social Science Research Unit, Institute of Education, University of London. 2014.
|
| 8. |
Russell-Rose T, Gooch P. 2dSearch: A visual approach to search strategy formulation. 2018.
|
| 9. |
Li J, Dada A, Puladi B, et al. ChatGPT in healthcare: a taxonomy and systematic review. Comput Methods Programs Biomed, 2024, 245: 108013.
|
| 10. |
Aum S, Choe S. srBERT: automatic article classification model for systematic review using BERT. Syst Rev, 2021, 10(1): 285.
|
| 11. |
Lee S, Kim D, Lee K, et al. BEST: next-generation biomedical entity search tool for knowledge discovery from biomedical literature. PLoS One, 2016, 11(10): e0164680.
|
| 12. |
Grames E M, Stillman A N, Tingley M W, et al. An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods Ecol Evol, 2019, 10(10): 1645-1654.
|
| 13. |
Gates A, Johnson C, Hartling L. Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool. Syst Rev, 2018, 7(1): 45.
|
| 14. |
Marshall IJ, Noel-Storr A, Kuiper J, et al. Machine learning for identifying randomized controlled trials: an evaluation and practitioner's guide. Res Synth Methods, 2018, 9(4): 602-614.
|
| 15. |
Noel-Storr A, Dooley G, Elliott J, et al. An evaluation of Cochrane crowd found that crowdsourcing produced accurate results in identifying randomized trials. J Clin Epidemiol, 2021, 133: 130-139.
|
| 16. |
Howard BE, Phillips J, Tandon A, et al. SWIFT-active screener: accelerated document screening through active learning and integrated recall estimation. Environ Int, 2020, 138: 105623.
|
| 17. |
Przyby?a P, Brockmeier AJ, Kontonatsios G, et al. Prioritising references for systematic reviews with RobotAnalyst: a user study. Res Synth Methods, 2018, 9(3): 470-488.
|
| 18. |
Cheng SH, Augustin C, Bethel A, et al. Using machine learning to advance synthesis and use of conservation and environmental evidence. Conserv Biol, 2018, 32(4): 762-764.
|
| 19. |
Yu Z, Menzies T. FAST2: an intelligent assistant for finding relevant papers. Expert Syst Appl, 2019, 120: 57-71.
|
| 20. |
van der Pol JA, Huizinga TW, Bergstra SA. Is AI-assisted active learning software able to reliably speed-up systematic literature reviews in rheumatology. A real-time comparison of AI-assisted and manual abstract selection. RMD Open, 2024, 10(4): e005024.
|
| 21. |
Romanov S, Siqueira AS, De Bruin J, et al. Optimizing ASReview simulations: a generic multiprocessing solution for ‘light-data’and ‘heavy-data’users . Data Intell, 2024, 1-19.
|
| 22. |
Haddaway NR, Grainger MJ, Gray CT. Citationchaser: a tool for transparent and efficient forward and backward citation chasing in systematic searching. Res Synth Methods, 2022, 13(4): 533-545.
|
| 23. |
Kiritchenko S, de Bruijn B, Carini S, et al. ExaCT: automatic extraction of clinical trial characteristics from journal publications. BMC Med Inform Decis Mak, 2010, 10: 56.
|
| 24. |
Walker VR, Schmitt CP, Wolfe MS, et al. Evaluation of a semi-automated data extraction tool for public health literature-based reviews: Dextr. Environ Int, 2022, 159: 107025.
|
| 25. |
Jap J, Saldanha IJ, Smith BT, et al. Features and functioning of data abstraction assistant, a software application for data abstraction during systematic reviews. Res Synth Methods, 2019, 10(1): 2-14.
|
| 26. |
Main Finding Recognition. ASReview Documentation, 2024.
|
| 27. |
Hamel C, Kelly SE, Thavorn K, et al. An evaluation of DistillerSR's machine learning-based prioritization tool for title/abstract screening - impact on reviewer-relevant outcomes. BMC Med Res Methodol, 2020, 20(1): 256.
|
| 28. |
Tsou AY, Treadwell JR, Erinoff E, et al. Machine learning for screening prioritization in systematic reviews: comparative performance of Abstrackr and EPPI-Reviewer. Syst Rev, 2020, 9(1): 73.
|
| 29. |
Adusumilli G, Pederson JM, Hardy N, et al. Mechanical thrombectomy with and without intravenous tissue plasminogen activator for acute ischemic stroke: a systematic review and meta-analysis using nested knowledge. Front Neurol, 2021, 12: 759759.
|
| 30. |
Oami T, Okada Y, Nakada TA. Performance of a large language model in screening citations. JAMA Netw Open, 2024, 7(7): e2420496.
|
| 31. |
Ronquillo JG, Ye J, Gorman D, et al. Practical aspects of using large language models to screen abstracts for cardiovascular drug development: cross-sectional study. JMIR Med Inform, 2024, 30: 12: e64143.
|
| 32. |
Ghosh M, Mukherjee S, Ganguly A, et al. AlpaPICO: extraction of PICO frames from clinical trial documents using LLMs. Methods, 2024, 226: 78-88.
|
| 33. |
Guo E, Gupta M, Deng J, et al. Automated paper screening for clinical reviews using large language models: data analysis study. J Med Internet Res, 2024, 26: e48996.
|
| 34. |
Schopow N, Osterhoff G, Baur D. Applications of the natural language processing tool chatgpt in clinical practice: comparative study and augmented systematic review. JMIR Med Inform, 2023, 11: e48933.
|
| 35. |
Lai H, Ge L, Sun M, et al. Assessing the risk of bias in randomized clinical trials with large language models. JAMA Netw Open, 2024, 7(5): e2412687.
|
| 36. |
Craig DB, Dr?ghici S. LmRaC: a functionally extensible tool for LLM interrogation of user experimental results. Bioinformatics, 2024, 40(12): btae679.
|
| 37. |
Ivanisenko TV, Demenkov PS, Ivanisenko VA. An accurate and efficient approach to knowledge extraction from scientific publications using structured ontology models, graph neural networks, and large language models. Int J Mol Sci, 2024, 25(21): 11811.
|
| 38. |
Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev, 2019, 8(1): 163.
|
| 39. |
郭玉杰, 張雪芹, 孫文宇, 等. 自動化文獻篩選工具在系統評價中的應用. 協和醫學雜志, 2024, 15(4): 921-926.
|
| 40. |
毛渤淳, 陳圣愷, 謝雨, 等. 經典深度學習算法對中文隨機對照試驗智能判別應用. 中國循證醫學雜志, 2019, 19(11): 1262-1267.
|
| 41. |
Yogarajan V, Dobbie G, Keegan TT. Debiasing large language models: research opportunities. J R Soc N Z, 2024, 55(2): 372-395.
|
| 42. |
Luo X, Chen F, Zhu D, et al. Potential roles of large language models in the production of systematic reviews and meta-analyses. J Med Internet Res, 2024, 26: e56780.
|
| 43. |
Yang Y, Shen H, Chen K, et al. From pixels to patients: the evolution and future of deep learning in cancer diagnostics: (trends in molecular medicine, published online December 11, 2024). Trends Mol Med, 2025, 21: S1471-S4914.
|
| 44. |
Haltaufderheide J, Ranisch R. The ethics of ChatGPT in medicine and healthcare: a systematic review on Large Language Models (LLMs). NPJ Digit Med, 2024, 7(1): 183.
|
| 45. |
Kalaw FGP, Baxter SL. Ethical considerations for large language models in ophthalmology. Curr Opin Ophthalmol, 2024, 35(6): 438-446.
|
| 46. |
Mirzaei T, Amini L, Esmaeilzadeh P. Clinician voices on ethics of LLM integration in healthcare: a thematic analysis of ethical concerns and implications. BMC Med Inform Decis Mak, 2024, 24(1): 250.
|
| 47. |
Ahn S. The transformative impact of large language models on medical writing and publishing: current applications, challenges and future directions. Korean J Physiol Pharmacol, 2024, 28(5): 393-401.
|
| 48. |
Zhou Y, Li SJ, Tang XY, et al. Using ChatGPT in nursing: scoping review of current opinions. JMIR Med Educ, 2024, 10: e54297.
|