| 1. |
Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381.
|
| 2. |
Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375.
|
| 3. |
Bedogni G. Clinical prediction models: a practical approach to development, validation and updating. J R Stat Soc Ser A Stat Soc, 2009, 172: 944.
|
| 4. |
Mallett S, Royston P, Dutton S, et al. Reporting methods in studies developing prognostic models in cancer: a review. BMC Med, 2010, 8: 20.
|
| 5. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.
|
| 6. |
曹煜隆, 單嬌, 龔志忠, 等. 個體預后與診斷預測模型研究報告規范—TRIPOD聲明解讀. 中國循證醫學雜志, 2020, 20(4): 492-496.
|
| 7. |
Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med, 2015, 162(1): W1-W73.
|
| 8. |
Heus P, Reitsma JB, Collins GS, et al. Transparent reporting of multivariable prediction models in journal and conference abstracts: TRIPOD for abstracts. Ann Intern Med, 2020.
|
| 9. |
Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist. BMJ, 2023, 380: e071018.
|
| 10. |
Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration. BMJ, 2023, 380: e071058.
|
| 11. |
陶立元, 劉玨. 基于多源數據的個體預后或診斷多因素預測模型報告規范(TRIPOD-Cluster)解讀. 中華醫學雜志, 2023, 103(36): 2893-2897.
|
| 12. |
韓莎莎, 吳鵬, 王則一, 等. 基于群數據科學研究的報告規范: TRIPOD-Cluster指南清單解讀及拓展. 數字醫學與健康, 2023, 1(1): 12-21.
|
| 13. |
Snell KIE, Levis B, Damen JAA, et al. Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA). BMJ, 2023, 381: e073538.
|
| 14. |
王子怡, 盧存存, 張晶磊, 等. 個體預后與診斷多變量預測模型系統評價/Meta分析報告規范(TRIPOD-SRMA)解讀. 中國循證醫學雜志, 2024, 24(2): 202-210.
|
| 15. |
李戈, 章萌, 夏鴿拉·買代提, 等. 個體預后或診斷預測模型系統綜述和Meta分析報告規范(TRIPOD-SRMA)案例解讀. 數字醫學與健康, 2023, 1(2): 69-76.
|
| 16. |
Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 2024, 385: e078378.
|
| 17. |
Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 2021, 11(7): e048008.
|
| 18. |
Schuit E, Groenwold RH, Harrell FE, et al. Unexpected predictor-outcome associations in clinical prediction research: causes and solutions. CMAJ, 2013, 185(10): E499-E505.
|
| 19. |
Rosenblatt M, Tejavibulya L, Jiang R, et al. Data leakage inflates prediction performance in connectome-based machine learning models. Nat Commun, 2024, 15(1): 1829.
|
| 20. |
Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw, 2018, 106: 249-259.
|
| 21. |
Ibrahim H, Liu X, Zariffa N, et al. Health data poverty: an assailable barrier to equitable digital health care. Lancet Digit Health, 2021, 3(4): e260-e265.
|
| 22. |
Bertram MG, Sundin J, Roche DG, et al. Open science. Curr Biol, 2023, 33(15): R792-R797.
|
| 23. |
Thibault RT, Amaral OB, Argolo F, et al. Open science 2. 0: towards a truly collaborative research ecosystem. PLoS Biol, 2023, 21(10): e3002362.
|