網狀Meta分析自2002年由Lumley教授正式提出以來[1, 2],引發廣泛關注。近年來,網狀Meta分析的方法學得到了快速發展且越發成熟。因貝葉斯理論克服了許多經典頻率學無法解釋的問題,更適合于網狀Meta分析,故當前網狀Meta分析制作仍以直接或間接使用基于貝葉斯理論研發的軟件為主[3-8]。然而,貝葉斯先驗設定卻一直是軟件使用者的主要難題之一,特別是對于初學者,對其設定往往較為保守。
近年來,隨著經典頻率學派的不斷完善,其在網狀Meta分析中的應用也逐漸顯現并取得了較大發展。R軟件netmeta程序包[9]就是基于經典頻率學派研發的一款專用于實現網狀Meta分析的程序包,本文以《R軟件R2WinBUGS程序包在網狀Meta分析中的應用》一文的數據為示例[3, 10],對該程序包的使用進行介紹。
1 程序包安裝與加載
R軟件當前的最新版本為R-3.0.2,可從官方網站[http://www.r.project.org]上獲取。R軟件的安裝可參閱《R軟件Metafor程序包在Meta分析中的應用》一文[11]。
R軟件安裝之后,就可以安裝及加載相關的程序包了。因netmeta程序包[9]內部數據處理和圖形繪制的核心代碼均依賴于meta程序包[12]及grid程序包實現,因此,在安裝與加載netmeta程序包的同時,還需安裝與加載meta及grid這兩個程序包。全部完成之后,方可進行后續操作。
netmeta程序包的具體安裝與加載代碼如下:
install.packages(“netmeta”)
library(“netmeta”)
meta程序包為:
install.packages(“meta”)
library(“meta”)
grid程序包為:
install.packages(“grid”)
library(“grid”)
2 數據預處理與加載
netmeta程序包在數據的加載上與nlme程序包[7]相似,其最終需要加載的數據格式為:效應量、標準誤、配對治療方案以及配對治療方案的研究者編號。表 1展示了最終預加載的數據及其格式,其預加載數據運算過程請參閱《R軟件nlme程序包在網狀Meta分析中的應用》一文[7]。
數據按照表 1處理好之后,將其儲存在桌面的“Rwork”文件夾下的“netmetadata.txt”文本中。存貯完畢后,即可進行讀取。
表1
處理后加載數據
studlab |
TE |
seTE |
t1 |
t2 |
1 |
–0.106 |
0.23 |
A |
B |
1 |
–0.235 |
0.229 |
A |
G |
1 |
–0.129 |
0.23 |
B |
G |
2 |
–0.443 |
0.261 |
A |
B |
2 |
–0.109 |
0.258 |
A |
L |
2 |
0.334 |
0.264 |
B |
L |
3 |
–0.765 |
0.264 |
A |
B |
3 |
–0.863 |
0.266 |
A |
L |
3 |
–0.098 |
0.272 |
B |
L |
4 |
–1.651 |
0.216 |
A |
D |
5 |
–0.416 |
0.266 |
A |
D |
6 |
–0.769 |
0.224 |
A |
D |
7 |
–0.344 |
0.273 |
A |
D |
8 |
–0.197 |
0.198 |
A |
D |
8 |
–0.385 |
0.227 |
A |
E |
8 |
–0.188 |
0.196 |
D |
E |
9 |
–0.030 |
0.245 |
A |
E |
10 |
–0.608 |
0.251 |
A |
E |
11 |
–1.061 |
0.286 |
A |
E |
12 |
–0.461 |
0.22 |
A |
E |
12 |
–0.379 |
0.22 |
A |
F |
12 |
0.081 |
0.173 |
E |
F |
13 |
–0.479 |
0.348 |
A |
E |
13 |
–0.468 |
0.431 |
A |
G |
13 |
0.01 |
0.424 |
E |
G |
14 |
–0.594 |
0.251 |
A |
E |
14 |
–0.379 |
0.289 |
A |
K |
14 |
0.215 |
0.257 |
E |
K |
15 |
–0.947 |
0.26 |
A |
E |
15 |
–1.245 |
0.321 |
A |
K |
15 |
–0.298 |
0.289 |
E |
K |
16 |
–1.056 |
0.294 |
A |
G |
17 |
–0.193 |
0.536 |
A |
G |
17 |
–0.225 |
0.535 |
A |
K |
17 |
–0.032 |
0.388 |
G |
K |
18 |
–0.293 |
0.286 |
A |
G |
18 |
–0.563 |
0.286 |
A |
N |
18 |
–0.271 |
0.28 |
G |
N |
19 |
–0.349 |
0.284 |
A |
G |
19 |
–0.490 |
0.287 |
A |
N |
19 |
–0.141 |
0.281 |
G |
N |
20 |
–0.956 |
0.707 |
A |
H |
21 |
–1.168 |
0.464 |
A |
J |
22 |
–0.617 |
0.385 |
A |
J |
23 |
-1.043 |
0.424 |
A |
K |
24 |
–0.795 |
0.256 |
A |
L |
25 |
–0.267 |
0.423 |
A |
L |
26 |
–0.790 |
0.239 |
A |
L |
27 |
–0.663 |
0.255 |
A |
L |
28 |
–0.885 |
0.37 |
A |
L |
29 |
–1.156 |
0.301 |
A |
N |
30 |
0.173 |
0.366 |
B |
G |
31 |
–0.355 |
0.279 |
B |
L |
32 |
0.74 |
0.369 |
B |
M |
33 |
0.161 |
0.284 |
C |
F |
34 |
0.102 |
0.298 |
C |
H |
35 |
–0.463 |
0.242 |
E |
F |
36 |
–0.485 |
0.239 |
E |
F |
37 |
–0.211 |
0.19 |
E |
K |
38 |
0.02 |
0.303 |
F |
G |
39 |
0.533 |
0.206 |
F |
K |
40 |
0.074 |
0.296 |
F |
L |
41 |
0.534 |
0.288 |
F |
N |
42 |
–0.304 |
0.349 |
G |
I |
43 |
–0.042 |
0.36 |
G |
J |
44 |
0.029 |
0.296 |
G |
K |
45 |
–0.288 |
0.439 |
G |
K |
46 |
0.08 |
0.4 |
G |
K |
47 |
–0.205 |
0.305 |
G |
K |
47 |
–0.503 |
0.314 |
G |
L |
47 |
–0.297 |
0.316 |
K |
L |
48 |
–0.510 |
0.275 |
G |
L |
49 |
–0.308 |
0.238 |
G |
L |
50 |
–0.341 |
0.395 |
G |
N |
51 |
–0.875 |
0.584 |
G |
N |
52 |
0.414 |
0.218 |
G |
N |
53 |
–0.344 |
0.285 |
G |
N |
54 |
–0.480 |
0.238 |
G |
N |
55 |
–0.790 |
0.34 |
G |
N |
56 |
0.189 |
0.242 |
I |
K |
57 |
0.407 |
0.286 |
I |
M |
58 |
–1.186 |
0.717 |
J |
K |
59 |
0.154 |
0.317 |
J |
L |
60 |
0.336 |
0.62 |
K |
M |
61 |
–0.581 |
0.393 |
L |
M |
62 |
–0.354 |
0.34 |
L |
N |
63 |
0.197 |
0.339 |
L |
N |
64 |
–0.329 |
0.323 |
L |
N |
注:上述數據均保留3位小數。studlab:配對治療措施的研究者編號,其中3臂試驗存在3個配對比較(如研究“1”所示);TE:配對藥物比較效應量,本處為logOR;seTE:配對藥物比較效應量所對應的標準誤;t1與t2:分別表示兩種配對藥物編號,其中: A為placebo,B為bupropion,C為citalopram,D為desvenlafaxine,E為duloxetine,F為escitalopram,G為fluoxetine,H為fluvoxamine,I為mirtazapine,J為nefazodone,K為paroxetine,L為sertraline,M為trazodone,N為velafaxine。 |
具體讀取命令如下:
data<-read.table("C:/Users/Administrator/Desktop/Rwork/netmetadata.txt", header=TRUE, sep="", na.strings="NA", dec=".", strip.white=TRUE)
讀取成功,則表明數據成功加載。
3 數據運算
在完成上述數據排列及加載之后,即可進行相應的運算。
執行運算的具體代碼如下:
net1<-netmeta(TE=data$TE, seTE=data$seTE, treat1=data$t1, treat2=data$t2, studlab=data$studlab, comb.random=TRUE, sm="OR", reference="A")
代碼中:TE、seTE、t1、t2、studlab參數參見表 1的注釋;“comb.random”表示是否默認儲存隨機模型,而配對研究的固定和隨機模型均會執行;“sm”表示選取的最終合并效應量;“reference”表示選取的參考治療方案,可以依次更改參考藥名,來獲取其他配對結果。
4 結果匯總
運算完成后,即可對運算的相關結果一一進行展示。
展示結果的命令較多,通過“net1”命令則可一次性展示單個配對比較的結果(表 2)及合并的結果(表 3)。兩種形式均可同時展示出固定效應與隨機效應模型的結果。
表2
配對治療方案結果
Data utilised in network meta-analysis |
? |
t1 |
t2 |
fixed effect model |
? |
random effects model |
OR |
95%CI |
W% |
Q |
Leverage |
OR |
95%CI |
W% |
1 |
A |
B |
0.5789 |
[0.4624;0.7247] |
1.33 |
2.44 |
0.17 |
? |
0.5707 |
[0.4290;0.7591] |
1.32 |
1 |
A |
G |
0.6141 |
[0.5227;0.7214] |
1.35 |
0.82 |
0.09 |
? |
0.6192 |
[0.5054;0.7587] |
1.34 |
1 |
B |
G |
1.0608 |
[0.8371;1.3442] |
1.33 |
0.44 |
0.18 |
? |
1.0851 |
[0.8039;1.4646] |
1.32 |
2 |
A |
B |
0.5789 |
[0.4624;0.7247] |
1.03 |
0.11 |
0.13 |
? |
0.5707 |
[0.4290;0.7591] |
1.14 |
2 |
A |
L |
0.5145 |
[0.4398;0.6019] |
1.08 |
3.16 |
0.07 |
? |
0.5198 |
[0.4246;0.6363] |
1.17 |
2 |
B |
L |
0.8887 |
[0.7080;1.1155] |
0.99 |
1.91 |
0.13 |
? |
0.9108 |
[0.6825;1.2156] |
1.1 |
3 |
A |
B |
0.5789 |
[0.4624;0.7247] |
1.04 |
0.47 |
0.13 |
? |
0.5707 |
[0.4290;0.7591] |
1.14 |
3 |
A |
L |
0.5145 |
[0.4398;0.6019] |
1.01 |
0.38 |
0.06 |
? |
0.5198 |
[0.4246;0.6363] |
1.12 |
3 |
B |
L |
0.8887 |
[0.7080;1.1155] |
0.92 |
0 |
0.12 |
? |
0.9108 |
[0.6825;1.2156] |
1.05 |
4 |
A |
D |
0.5088 |
[0.4203;0.6159] |
2.26 |
20.39 |
0.2 |
? |
0.5216 |
[0.3968;0.6856] |
1.74 |
5 |
A |
D |
0.5088 |
[0.4203;0.6159] |
1.49 |
0.95 |
0.13 |
? |
0.5216 |
[0.3968;0.6856] |
1.41 |
6 |
A |
D |
0.5088 |
[0.4203;0.6159] |
2.11 |
0.17 |
0.19 |
? |
0.5216 |
[0.3968;0.6856] |
1.68 |
7 |
A |
D |
0.5088 |
[0.4203;0.6159] |
1.42 |
1.48 |
0.13 |
? |
0.5216 |
[0.3968;0.6856] |
1.37 |
8 |
A |
D |
0.5088 |
[0.4203;0.6159] |
2.01 |
4.35 |
0.18 |
? |
0.5216 |
[0.3968;0.6856] |
1.64 |
8 |
A |
E |
0.5596 |
[0.4801;0.6522] |
1.03 |
0.37 |
0.06 |
? |
0.5619 |
[0.4583;0.6890] |
1.14 |
8 |
D |
E |
1.0999 |
[0.8767;1.3799] |
2.07 |
1.57 |
0.26 |
? |
1.0773 |
[0.7830;1.4821] |
1.67 |
9 |
A |
E |
0.5596 |
[0.4801;0.6522] |
1.76 |
5.05 |
0.1 |
? |
0.5619 |
[0.4583;0.6890] |
1.54 |
10 |
A |
E |
0.5596 |
[0.4801;0.6522] |
1.68 |
0.01 |
0.1 |
? |
0.5619 |
[0.4583;0.6890] |
1.5 |
11 |
A |
E |
0.5596 |
[0.4801;0.6522] |
1.29 |
2.82 |
0.07 |
? |
0.5619 |
[0.4583;0.6890] |
1.3 |
12 |
A |
E |
0.5596 |
[0.4801;0.6522] |
1.29 |
0.17 |
0.07 |
? |
0.5619 |
[0.4583;0.6890] |
1.3 |
12 |
A |
F |
0.4322 |
[0.3538;0.5279] |
1.29 |
2.58 |
0.13 |
? |
0.4325 |
[0.3293;0.5680] |
1.3 |
12 |
E |
F |
0.7723 |
[0.6402;0.9318] |
2.88 |
3.14 |
0.25 |
? |
0.7696 |
[0.5888;1.0060] |
1.92 |
13 |
A |
E |
0.5596 |
[0.4801;0.6522] |
0.7 |
0.07 |
0.04 |
? |
0.5619 |
[0.4583;0.6890] |
0.87 |
13 |
A |
G |
0.6141 |
[0.5227;0.7214] |
0.33 |
0 |
0.02 |
? |
0.6192 |
[0.5054;0.7587] |
0.48 |
13 |
E |
G |
1.0974 |
[0.9011;1.3365] |
0.36 |
0.02 |
0.03 |
? |
1.102 |
[0.8521;1.4251] |
0.52 |
14 |
A |
E |
0.5596 |
[0.4801;0.6522] |
1.26 |
0 |
0.07 |
? |
0.5619 |
[0.4583;0.6890] |
1.28 |
14 |
A |
K |
0.5431 |
[0.4480;0.6584] |
0.66 |
0.33 |
0.06 |
? |
0.5366 |
[0.4198;0.6860] |
0.84 |
14 |
E |
K |
0.9705 |
[0.8013;1.1756] |
1.17 |
0.66 |
0.11 |
? |
0.955 |
[0.7367;1.2379] |
1.23 |
15 |
A |
E |
0.5596 |
[0.4801;0.6522] |
1.24 |
1.58 |
0.07 |
? |
0.5619 |
[0.4583;0.6890] |
1.27 |
15 |
A |
K |
0.5431 |
[0.4480;0.6584] |
0.5 |
1.91 |
0.05 |
? |
0.5366 |
[0.4198;0.6860] |
0.68 |
15 |
E |
K |
0.9705 |
[0.8013;1.1756] |
0.91 |
0.62 |
0.08 |
? |
0.955 |
[0.7367;1.2379] |
1.04 |
16 |
A |
G |
0.6141 |
[0.5227;0.7214] |
1.22 |
3.74 |
0.08 |
? |
0.6192 |
[0.5054;0.7587] |
1.26 |
17 |
A |
G |
0.6141 |
[0.5227;0.7214] |
0.21 |
0.17 |
0.01 |
? |
0.6192 |
[0.5054;0.7587] |
0.33 |
17 |
A |
K |
0.5431 |
[0.4480;0.6584] |
0.21 |
0.3 |
0.02 |
? |
0.5366 |
[0.4198;0.6860] |
0.33 |
17 |
G |
K |
0.8844 |
[0.7241;1.0801] |
0.6 |
0.05 |
0.06 |
? |
0.8666 |
[0.6744;1.1135] |
0.77 |
18 |
A |
G |
0.6141 |
[0.5227;0.7214] |
0.85 |
0.3 |
0.05 |
? |
0.6192 |
[0.5054;0.7587] |
1 |
18 |
A |
N |
0.4905 |
[0.4041;0.5954] |
0.85 |
0.18 |
0.08 |
? |
0.481 |
[0.3761;0.6152] |
1 |
18 |
G |
N |
0.7987 |
[0.6734;0.9474] |
0.92 |
0.02 |
0.07 |
? |
0.7768 |
[0.6229;0.9688] |
1.06 |
19 |
A |
G |
0.6141 |
[0.5227;0.7214] |
0.87 |
0.16 |
0.06 |
? |
0.6192 |
[0.5054;0.7587] |
1.02 |
19 |
A |
N |
0.4905 |
[0.4041;0.5954] |
0.84 |
0.39 |
0.08 |
? |
0.481 |
[0.3761;0.6152] |
0.99 |
19 |
G |
N |
0.7987 |
[0.6734;0.9474] |
0.91 |
0.06 |
0.07 |
? |
0.7768 |
[0.6229;0.9688] |
1.05 |
20 |
A |
H |
0.4015 |
[0.1968;0.8191] |
0.21 |
0 |
0.26 |
? |
0.3997 |
[0.1673;0.9547] |
0.33 |
21 |
A |
J |
0.5129 |
[0.3574;0.7360] |
0.49 |
1.16 |
0.16 |
? |
0.5238 |
[0.3406;0.8056] |
0.67 |
22 |
A |
J |
0.5129 |
[0.3574;0.7360] |
0.71 |
0.02 |
0.23 |
? |
0.5238 |
[0.3406;0.8056] |
0.88 |
23 |
A |
K |
0.5431 |
[0.4480;0.6584] |
0.59 |
1.04 |
0.05 |
? |
0.5366 |
[0.4198;0.6860] |
0.77 |
24 |
A |
L |
0.5145 |
[0.4398;0.6019] |
1.61 |
0.26 |
0.1 |
? |
0.5198 |
[0.4246;0.6363] |
1.47 |
25 |
A |
L |
0.5145 |
[0.4398;0.6019] |
0.59 |
0.88 |
0.04 |
? |
0.5198 |
[0.4246;0.6363] |
0.77 |
26 |
A |
L |
0.5145 |
[0.4398;0.6019] |
1.85 |
0.28 |
0.11 |
? |
0.5198 |
[0.4246;0.6363] |
1.58 |
27 |
A |
L |
0.5145 |
[0.4398;0.6019] |
1.62 |
0 |
0.1 |
? |
0.5198 |
[0.4246;0.6363] |
1.48 |
28 |
A |
L |
0.5145 |
[0.4398;0.6019] |
0.77 |
0.35 |
0.05 |
? |
0.5198 |
[0.4246;0.6363] |
0.93 |
29 |
A |
N |
0.4905 |
[0.4041;0.5954] |
1.17 |
2.17 |
0.11 |
? |
0.481 |
[0.3761;0.6152] |
1.23 |
30 |
B |
G |
1.0608 |
[0.8371;1.3442] |
0.79 |
0.1 |
0.11 |
? |
1.0851 |
[0.8039;1.4646] |
0.95 |
31 |
B |
L |
0.8887 |
[0.7080;1.1155] |
1.36 |
0.72 |
0.17 |
? |
0.9108 |
[0.6825;1.2156] |
1.34 |
32 |
B |
M |
1.1251 |
[0.7357;1.7208] |
0.78 |
2.84 |
0.35 |
? |
1.1294 |
[0.6742;1.8919] |
0.94 |
33 |
C |
F |
1.1829 |
[0.7015;1.9949] |
1.31 |
0 |
0.88 |
? |
1.1861 |
[0.6076;2.3153] |
1.31 |
34 |
C |
H |
1.0989 |
[0.6374;1.8944] |
1.19 |
0 |
0.87 |
? |
1.0961 |
[0.5529;2.1731] |
1.24 |
35 |
E |
F |
0.7723 |
[0.6402;0.9318] |
1.8 |
0.72 |
0.16 |
? |
0.7696 |
[0.5888;1.0060] |
1.56 |
36 |
E |
F |
0.7723 |
[0.6402;0.9318] |
1.85 |
0.9 |
0.16 |
? |
0.7696 |
[0.5888;1.0060] |
1.58 |
37 |
E |
K |
0.9705 |
[0.8013;1.1756] |
2.93 |
0.91 |
0.26 |
? |
0.955 |
[0.7367;1.2379] |
1.93 |
38 |
F |
G |
1.4209 |
[1.1415;1.7688] |
1.15 |
1.2 |
0.14 |
? |
1.4319 |
[1.0686;1.9187] |
1.22 |
39 |
F |
K |
1.2566 |
[1.0087;1.5655] |
2.49 |
2.19 |
0.3 |
? |
1.2408 |
[0.9149;1.6830] |
1.81 |
40 |
F |
L |
1.1904 |
[0.9493;1.4928] |
1.21 |
0.11 |
0.15 |
? |
1.2019 |
[0.8877;1.6273] |
1.25 |
41 |
F |
N |
1.1349 |
[0.8908;1.4461] |
1.27 |
2 |
0.18 |
? |
1.1123 |
[0.8072;1.5327] |
1.29 |
42 |
G |
I |
0.7247 |
[0.5019;1.0464] |
0.87 |
0 |
0.29 |
? |
0.7143 |
[0.4433;1.1509] |
1.01 |
43 |
G |
J |
0.8352 |
[0.5779;1.2070] |
0.82 |
0.15 |
0.27 |
? |
0.8459 |
[0.5444;1.3143] |
0.97 |
44 |
G |
K |
0.8844 |
[0.7241;1.0801] |
1.21 |
0.26 |
0.12 |
? |
0.8666 |
[0.6744;1.1135] |
1.25 |
45 |
G |
K |
0.8844 |
[0.7241;1.0801] |
0.55 |
0.14 |
0.05 |
? |
0.8666 |
[0.6744;1.1135] |
0.73 |
46 |
G |
K |
0.8844 |
[0.7241;1.0801] |
0.66 |
0.26 |
0.07 |
? |
0.8666 |
[0.6744;1.1135] |
0.84 |
47 |
G |
K |
0.8844 |
[0.7241;1.0801] |
0.79 |
0.05 |
0.08 |
? |
0.8666 |
[0.6744;1.1135] |
0.95 |
47 |
G |
L |
0.8378 |
[0.7036;0.9976] |
0.7 |
0.71 |
0.05 |
? |
0.8394 |
[0.6710;1.0501] |
0.88 |
47 |
K |
L |
0.9473 |
[0.7612;1.1788] |
0.69 |
0.38 |
0.08 |
? |
0.9686 |
[0.7331;1.2798] |
0.86 |
48 |
G |
L |
0.8378 |
[0.7036;0.9976] |
1.4 |
1.47 |
0.1 |
? |
0.8394 |
[0.6710;1.0501] |
1.36 |
49 |
G |
L |
0.8378 |
[0.7036;0.9976] |
1.87 |
0.3 |
0.14 |
? |
0.8394 |
[0.6710;1.0501] |
1.59 |
50 |
G |
N |
0.7987 |
[0.6734;0.9474] |
0.68 |
0.09 |
0.05 |
? |
0.7768 |
[0.6229;0.9688] |
0.85 |
51 |
G |
N |
0.7987 |
[0.6734;0.9474] |
0.31 |
1.24 |
0.02 |
? |
0.7768 |
[0.6229;0.9688] |
0.46 |
52 |
G |
N |
0.7987 |
[0.6734;0.9474] |
2.22 |
8.58 |
0.16 |
? |
0.7768 |
[0.6229;0.9688] |
1.72 |
53 |
G |
N |
0.7987 |
[0.6734;0.9474] |
1.3 |
0.18 |
0.09 |
? |
0.7768 |
[0.6229;0.9688] |
1.31 |
54 |
G |
N |
0.7987 |
[0.6734;0.9474] |
1.87 |
1.15 |
0.13 |
? |
0.7768 |
[0.6229;0.9688] |
1.59 |
55 |
G |
N |
0.7987 |
[0.6734;0.9474] |
0.91 |
2.76 |
0.07 |
? |
0.7768 |
[0.6229;0.9688] |
1.05 |
56 |
I |
K |
1.2203 |
[0.8558;1.7400] |
1.8 |
0 |
0.56 |
? |
1.2133 |
[0.7588;1.9399] |
1.56 |
57 |
I |
M |
1.4636 |
[0.9599;2.2314] |
1.29 |
0.01 |
0.57 |
? |
1.4573 |
[0.8517;2.4934] |
1.3 |
58 |
J |
K |
1.0589 |
[0.7164;1.5651] |
0.21 |
3.01 |
0.08 |
? |
1.0245 |
[0.6411;1.6371] |
0.32 |
59 |
J |
L |
1.0031 |
[0.6962;1.4453] |
1.05 |
0.23 |
0.35 |
? |
0.9923 |
[0.6396;1.5397] |
1.15 |
60 |
K |
M |
1.1994 |
[0.7891;1.8229] |
0.27 |
0.06 |
0.12 |
? |
1.2011 |
[0.7202;2.0031] |
0.41 |
61 |
L |
M |
1.2661 |
[0.8377;1.9136] |
0.68 |
4.32 |
0.29 |
? |
1.24 |
[0.7514;2.0463] |
0.86 |
62 |
L |
N |
0.9534 |
[0.7786;1.1675] |
0.91 |
0.81 |
0.09 |
? |
0.9254 |
[0.7149;1.1981] |
1.05 |
63 |
L |
N |
0.9534 |
[0.7786;1.1675] |
0.92 |
0.52 |
0.09 |
? |
0.9254 |
[0.7149;1.1981] |
1.05 |
64 |
L |
N |
0.9534 |
[0.7786;1.1675] |
1.01 |
0.76 |
0.1 |
? |
0.9254 |
[0.7149;1.1981] |
1.12 |
表3
合并結果匯總
Treatment estimate (sm='OR', reference.group='A'): |
? |
固定效應模型 |
? |
隨機效應模型 |
OR |
95%-CI |
OR |
95%-CI |
A |
1 |
[1.0000;1.0000] |
? |
1 |
[1.0000;1.0000] |
B |
1.7273 |
[1.3798;2.1624] |
? |
1.7523 |
[1.3174;2.3307] |
C |
2.7371 |
[1.5778;4.7482] |
? |
2.7426 |
[1.3549;5.5517] |
D |
1.9655 |
[1.6236;2.3794] |
? |
1.9172 |
[1.4585;2.5201] |
E |
1.787 |
[1.5332;2.0829] |
? |
1.7796 |
[1.4514;2.1822] |
F |
2.3138 |
[1.8943;2.8262] |
? |
2.3123 |
[1.7606;3.0370] |
G |
1.6284 |
[1.3862;1.9130] |
? |
1.6149 |
[1.3180;1.9787] |
H |
2.4908 |
[1.2208;5.0819] |
? |
2.5022 |
[1.0474;5.9774] |
I |
2.2469 |
[1.5480;3.2613] |
? |
2.2609 |
[1.3896;3.6786] |
J |
1.9497 |
[1.3587;2.7978] |
? |
1.9091 |
[1.2413;2.9362] |
K |
1.8413 |
[1.5189;2.2321] |
? |
1.8635 |
[1.4577;2.3823] |
L |
1.9437 |
[1.6615;2.2738] |
? |
1.9239 |
[1.5715;2.3553] |
M |
1.5352 |
[1.0133;2.3261] |
? |
1.5515 |
[0.9359;2.5720] |
N |
2.0387 |
[1.6795;2.4748] |
? |
2.0789 |
[1.6254;2.6589] |
? |
? |
? |
? |
? |
? |
Quantifying heterogeneity/inconsistency: |
tau^2=0.0581; I^2=42% |
Test of heterogeneity/inconsistency: |
? |
Q |
d.f. |
p.value |
? |
? |
108.65 |
63 |
0.0003 |
? |
此外,執行“net1”命令后的結果應為三部分:原始數據分析、配對治療方案結果及結果匯總分析,其中原始數據分析結果的資料在此未作展示,讀者運行命令后即可獲取。
5 繪制圖形
netmeta程序包當前僅支持森林圖的繪制。具體命令如下:
forest(net1, ref="A")
命令中:“ref”表示選取的參考藥物,本例為A;“net1”為數據匯總的命令。因步驟3中運算時設定的為隨機效應模型,故森林圖依據隨機效應模型繪制(圖 1)。可以看到,圖 1是表 3中隨機效應模型結果的展示。
至此,使用netmeta程序包實現網狀Meta分析中的操作就全部完成。
6 結語
netmeta程序包是目前唯一一個基于頻率學派研發的、且未使用回歸模型就能一次性完成網狀Meta分析的程序包。因此,其避免了貝葉斯統計中復雜先驗設置、初始值設置,以及回歸模型[7]啞變量和方差-協方差矩陣等設置所帶來的人為偏差,簡化了操作者對各參數的設定。然而,盡管netmeta程序包在數據運算及操作流程上較其他程序包[3-8]簡捷,但其在圖形的繪制功能上仍有待完善;此外,與基于貝葉斯統計研發的軟件及程序包相比,其在結果似然估計精確度上亦稍為遜色。與前述的基于頻率學派研發的nlme程序包[7]相比,netmeta程序包能順利處理大于兩臂的研究,更加適合初學者。在圖形方面,netmeta程序包已可繪制森林圖;網狀Meta分析中建議繪制的網狀關系圖可通過network程序包等來實現[13]。
盡管該程序包在使用方面存在諸多優點,但對于組間與組內的異質性與一致性的鑒別仍有所欠缺,同時,對相關性的考量也未引入到該程序包中。隨著網狀Meta分析方法學不斷完善及該程序包的不斷更新,相信該程序包的優勢將逐漸展露,運用也將越發廣泛。