Citation: 廖萬忠, 蔣偉哲, 何碧鉆, 覃久蕓, 劉雪萍, 付書婕. 腸道菌群及其代謝物在哮喘中的作用研究進展. Chinese Journal of Respiratory and Critical Care Medicine, 2023, 22(9): 666-672. doi: 10.7507/1671-6205.202305029 Copy
Copyright ? the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
| 1. | Miller RL, Grayson MH, Strothman K. Advances in asthma: new understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol, 2021, 148(6): 1430-1441. |
| 2. | Papi A, Brightling C, Pedersen SE, et al. Asthma. Lancet, 2018, 391(10122): 783-800. |
| 3. | Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr, 2002, 22: 283-307. |
| 4. | Hillman ET, Lu H, Yao T, et al. Microbial ecology along the gastrointestinal tract. Microbes Environ, 2017, 32(4): 300-313. |
| 5. | He Y, Wen Q, Yao F, et al. Gut-lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol, 2017, 43(1): 81-95. |
| 6. | Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett, 2016, 590(21): 3721-3738. |
| 7. | Russell SL, Gold MJ, Hartmann M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep, 2012, 13(5): 440-447. |
| 8. | McGovern N, Shin A, Low G, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature, 2017, 546(7660): 662-666. |
| 9. | Mishra A, Lai GC, Yao LJ, et al. Microbial exposure during early human development primes fetal immune cells. Cell, 2021, 184(13): 3394-3409. e20. |
| 10. | Rackaityte E, Halkias J, Fukui EM, et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat Med, 2020, 26(4): 599-607. |
| 11. | Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med, 2020, 26(11): 1766-1775. |
| 12. | Stokholm J, Blaser MJ, Thorsen J, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun, 2018, 9(1): 141. |
| 13. | Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med, 2016, 22(10): 1187-1191. |
| 14. | 康樹敏. 生命早期不同環境對小鼠腸道菌群定植以對哮喘模型Th1/Th2平衡的影響[D]. 東南大學, 2016. |
| 15. | Qian LJ, Kang SM, Xie JL, et al. Early-life gut microbial colonization shapes Th1/Th2 balance in asthma model in BALB/c mice. BMC Microbiol, 2017, 17(1): 135. |
| 16. | 楊玉婷, 倪吉祥, 徐彪, 等. 腸道菌群通過短鏈脂肪酸參與過敏性哮喘發病的相關機制研究進展. 山東醫藥, 2021, 61(23): 109-112. |
| 17. | Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480): 451-455. |
| 18. | Poulain-Godefroy O, Bouté M, Carrard J, et al. The aryl hydrocarbon receptor in asthma: friend or foe? Int J Mol Sci, 2020, 21(22): 8797. |
| 19. | Valverde-Molina J, García-Marcos L. Microbiome and asthma: microbial dysbiosis and the origins, phenotypes, persistence, and severity of asthma. Nutrients, 2023, 15(3): 486. |
| 20. | Hasegawa K, Linnemann RW, Mansbach JM, et al. The fecal microbiota profile and bronchiolitis in infants. Pediatrics, 2016, 138(1): e20160218. |
| 21. | Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med, 2015, 7(307): 307ra152. |
| 22. | Arrieta MC, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol, 2018, 142(2): 424-434. |
| 23. | van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol, 2011, 128(5): 948-955. e553. |
| 24. | Li YN, Huang F, Liu L, et al. Effect of oral feeding with Clostridium leptum on regulatory T-cell responses and allergic airway inflammation in mice. Ann Allergy Asthma Immunol, 2012, 109(3): 201-207. |
| 25. | Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science, 2012, 336(6086): 1268-1273. |
| 26. | Ashique S, De Rubis G, Sirohi E, et al. Short chain fatty acids: fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chem Biol Interact, 2022, 368: 110231. |
| 27. | Li M, van Esch BCAM, Wagenaar GTM, et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol, 2018, 831: 52-59. |
| 28. | Thio CL, Chi PY, Lai AC, et al. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J Allergy Clin Immunol, 2018, 142(6): 1867-1883. |
| 29. | Aoyama M, Kotani J, Usami M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 2010, 26(6): 653- 661. |
| 30. | Liu Q, Tian XL, Maruyama D, et al. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression. Am J Physiol Lung Cell Mol Physiol, 2021, 321(1): L65-L78. |
| 31. | Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol, 2015, 16(1): 36-44. |
| 32. | Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med, 2014, 20(2): 159-166. |
| 33. | Manni ML, Heinrich VA, Buchan GJ, et al. Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Sci Rep, 2021, 11(1): 17788. |
| 34. | Jia W, Xie GX, Jia WP. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128. |
| 35. | 張瀚文, 翁育清. 肥胖型哮喘發病機制及治療進展. 嶺南急診醫學雜志, 2022, 27(02): 200-202. |
| 36. | Gürdeniz G, Ernst M, Rago D, et al. Neonatal metabolome of caesarean section and risk of childhood asthma. Eur Respir J, 2022, 59(6): 2102406. |
| 37. | Chang YD, Li CH, Tsai CH, et al. Aryl hydrocarbon receptor deficiency enhanced airway inflammation and remodeling in a murine chronic asthma model. FASEB J, 2020, 34(11): 15300-15313. |
| 38. | van der Sluijs KF, van de Pol MA, Kulik W, et al. Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design. Thorax, 2013, 68(12): 1122-1130. |
| 39. | 范文婷, 鐘世民, 胡琦, 等. 色氨酸代謝物調控Th17/Treg分化在小鼠哮喘變應原特異性免疫治療中的作用及機制研究. 第三軍醫大學學報, 2018, 40(8): 658-665. |
| 40. | Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med, 2020, 18(1): 456. |
| 41. | Cong YZ, Feng T, Fujihashi K, et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A, 2009, 106(46): 19256-19261. |
| 42. | Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol, 2012, 12(12): 821-832. |
| 43. | Bunker JJ, Erickson SA, Flynn TM, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science, 2017, 358(6361): eaan6619. |
| 44. | Dzidic M, Abrahamsson TR, Artacho A, et al. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. J Allergy Clin Immunol, 2017, 139(3): 1017-1025. e14. |
| 45. | Kau AL, Planer JD, Liu J, et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med, 2015, 7(276): 276ra24. |
| 46. | Zhang XZ, Borbet TC, Fallegger A, et al. An antibiotic-impacted microbiota compromises the development of colonic regulatory T cells and predisposes to dysregulated immune responses. mBio, 2021, 12(1): e03335-20. |
| 47. | Cait A, Hughes MR, Antignano F, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol, 2018, 11(3): 785-795. |
| 48. | Bradley CP, Teng F, Felix KM, et al. Segmented Filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe, 2017, 22(5): 697-704, e4. |
| 49. | 李賤, 鄒朋成, 楊莉容, 等. Th17細胞在哮喘發病中的作用研究進展. 中國呼吸與危重監護雜志, 2013, 12(3): 322-324. |
| 50. | Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell, 2021, 184(15): 3884-3898, e11. |
| 51. | Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 2009, 139(3): 485-498. |
| 52. | Li LZ, Fang ZF, Lee YK, et al. Prophylactic effects of oral administration of Lactobacillus casei on house dust mite-induced asthma in mice. Food Funct, 2020, 11(10): 9272-9284. |
| 53. | Wilburn AN, McAlees JW, Haslam DB, et al. Delayed microbial maturation durably exacerbates Th17 driven asthma in mice. Am J Respir Cell Mol Biol, 2023, 68(5): 498-510. |
| 54. | Mamantopoulos M, Frising UC, Asaoka T, et al. El Tor Biotype Vibrio cholerae activates the caspase-11-independent canonical Nlrp3 and Pyrin inflammasomes. Front Immunol, 2019, 10: 2463. |
| 55. | Seo SU, Kamada N, Mu?oz-Planillo R, et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity, 2015, 42(4): 744-755. |
| 56. | Umiker B, Lee HH, Cope J, et al. The NLRP3 inflammasome mediates DSS-induced intestinal inflammation in Nod2 knockout mice. Innate Immun, 2019, 25(2): 132-143. |
| 57. | Niu JL, Cui MM, Yang X, et al. Microbiota-derived acetate enhances host antiviral response via NLRP3. Nat Commun, 2023, 14(1): 642. |
| 58. | Zhang Q, Ran X, He Y, et al. Acetate downregulates the activation of NLRP3 inflammasomes and attenuates lung injury in neonatal mice with bronchopulmonary dysplasia. Front Pediatr, 2021, 8: 595157. |
| 59. | Crosby CM, Kronenberg M. Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol, 2018, 18(9): 559-574. |
| 60. | Olszak T, An DD, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 2012, 336(6080): 489-493. |
| 61. | Wingender G, Stepniak D, Krebs P, et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology, 2012, 143(2): 418-428. |
| 62. | Michels KR, Lukacs NW, Fonseca W. TLR activation and allergic disease: early life microbiome and treatment. Curr Allergy Asthma Rep, 2018, 18(11): 61. |
| 63. | Braun-Fahrl?nder C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med, 2002, 347(12): 869-877. |
| 64. | Rautava S, Kainonen E, Salminen S, et al. Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant. J Allergy Clin Immunol, 2012, 130(6): 1355-1360. |
| 65. | Conrad ML, Ferstl R, Teich R, et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med, 2009, 206(13): 2869-2877. |
| 66. | 徐程, 徐欣欣, 田燁, 等. 下呼吸道流感嗜血桿菌定植通過Toll樣受體4影響哮喘小鼠免疫失衡. 診斷學理論與實踐, 2022, 21(4): 470-475. |
| 67. | Han D, Walsh MC, Cejas PJ, et al. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity, 2013, 38(6): 1211-1222. |
| 68. | Wang W, Li Y, Han G, et al. Lactobacillus fermentum CECT5716 alleviates the inflammatory response in asthma by regulating TLR2/TLR4 expression. Front Nutr, 2022, 9: 931427. |
| 69. | Zhang J, Ma JY, Li QH, et al. Exploration of the effect of mixed probiotics on microbiota of allergic asthma mice. Cell Immunol, 2021, 367: 104399. |
| 70. | Abbasi-Dokht T, Sadrifar S, Forouzandeh S, et al. Multistrain probiotics supplement alleviates asthma symptoms via increasing Treg cells population: a randomized, double-blind, placebo-controlled trial. Int Arch Allergy Immunol, 2023, 184(3): 291-301. |
| 71. | Schabussova I, Hufnagl K, Tang ML, et al. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS One, 2012, 7(7): e40271. |
| 72. | Sadrifar S, Abbasi-Dokht T, Forouzandeh S, et al. The impact of multistrains of probiotics on Th17-related cytokines in patients with asthma: a randomized, double-blind, placebo-controlled trial. J Asthma, 2023, 60(7): 1306-1315. |
| 73. | Pellaton C, Nutten S, Thierry AC, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflam, 2012, 2012: 686739. |
| 74. | Spacova I, Petrova MI, Fremau A, et al. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen-induced allergic asthma in a murine model. Allergy, 2019, 74(1): 100-110. |
| 75. | Spacova I, Van Beeck W, Seys S, et al. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes, 2020, 11(6): 1729-1744. |
| 76. | Wu ZW, Mehrabi Nasab E, Arora P, et al. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J Transl Med, 2022, 20(1): 130. |
| 77. | Williams NT. Probiotics. Am J Health Syst Pharm, 2010, 67(6): 449-458. |
| 78. | Venter C, Meyer RW, Greenhawt M, et al. Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy, 2022, 77(11): 3185-3198. |
| 79. | Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun, 2015, 6: 7320. |
| 80. | Ivakhnenko O, Niankovskyy S. Effect of the specific infant formula mixture of oligosaccharides on local immunity and development of allergic and infectious disease in young children: randomized study. Pediatria Polska, 2013, 88(5): 398-404. |
| 81. | Berthon BS, Macdonald-Wicks LK, Gibson PG, et al. Investigation of the association between dietary intake, disease severity and airway inflammation in asthma. Respirology, 2013, 18(3): 447-454. |
| 82. | Saeed MA, Gribben KC, Alam M, et al. Association of dietary fiber on asthma, respiratory symptoms, and inflammation in the adult national health and nutrition examination survey population. Ann Am Thorac Soc, 2020, 17(9): 1062-1068. |
- 1. Miller RL, Grayson MH, Strothman K. Advances in asthma: new understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol, 2021, 148(6): 1430-1441.
- 2. Papi A, Brightling C, Pedersen SE, et al. Asthma. Lancet, 2018, 391(10122): 783-800.
- 3. Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr, 2002, 22: 283-307.
- 4. Hillman ET, Lu H, Yao T, et al. Microbial ecology along the gastrointestinal tract. Microbes Environ, 2017, 32(4): 300-313.
- 5. He Y, Wen Q, Yao F, et al. Gut-lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol, 2017, 43(1): 81-95.
- 6. Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett, 2016, 590(21): 3721-3738.
- 7. Russell SL, Gold MJ, Hartmann M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep, 2012, 13(5): 440-447.
- 8. McGovern N, Shin A, Low G, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature, 2017, 546(7660): 662-666.
- 9. Mishra A, Lai GC, Yao LJ, et al. Microbial exposure during early human development primes fetal immune cells. Cell, 2021, 184(13): 3394-3409. e20.
- 10. Rackaityte E, Halkias J, Fukui EM, et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat Med, 2020, 26(4): 599-607.
- 11. Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med, 2020, 26(11): 1766-1775.
- 12. Stokholm J, Blaser MJ, Thorsen J, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun, 2018, 9(1): 141.
- 13. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med, 2016, 22(10): 1187-1191.
- 14. 康樹敏. 生命早期不同環境對小鼠腸道菌群定植以對哮喘模型Th1/Th2平衡的影響[D]. 東南大學, 2016.
- 15. Qian LJ, Kang SM, Xie JL, et al. Early-life gut microbial colonization shapes Th1/Th2 balance in asthma model in BALB/c mice. BMC Microbiol, 2017, 17(1): 135.
- 16. 楊玉婷, 倪吉祥, 徐彪, 等. 腸道菌群通過短鏈脂肪酸參與過敏性哮喘發病的相關機制研究進展. 山東醫藥, 2021, 61(23): 109-112.
- 17. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480): 451-455.
- 18. Poulain-Godefroy O, Bouté M, Carrard J, et al. The aryl hydrocarbon receptor in asthma: friend or foe? Int J Mol Sci, 2020, 21(22): 8797.
- 19. Valverde-Molina J, García-Marcos L. Microbiome and asthma: microbial dysbiosis and the origins, phenotypes, persistence, and severity of asthma. Nutrients, 2023, 15(3): 486.
- 20. Hasegawa K, Linnemann RW, Mansbach JM, et al. The fecal microbiota profile and bronchiolitis in infants. Pediatrics, 2016, 138(1): e20160218.
- 21. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med, 2015, 7(307): 307ra152.
- 22. Arrieta MC, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol, 2018, 142(2): 424-434.
- 23. van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol, 2011, 128(5): 948-955. e553.
- 24. Li YN, Huang F, Liu L, et al. Effect of oral feeding with Clostridium leptum on regulatory T-cell responses and allergic airway inflammation in mice. Ann Allergy Asthma Immunol, 2012, 109(3): 201-207.
- 25. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science, 2012, 336(6086): 1268-1273.
- 26. Ashique S, De Rubis G, Sirohi E, et al. Short chain fatty acids: fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chem Biol Interact, 2022, 368: 110231.
- 27. Li M, van Esch BCAM, Wagenaar GTM, et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol, 2018, 831: 52-59.
- 28. Thio CL, Chi PY, Lai AC, et al. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J Allergy Clin Immunol, 2018, 142(6): 1867-1883.
- 29. Aoyama M, Kotani J, Usami M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 2010, 26(6): 653- 661.
- 30. Liu Q, Tian XL, Maruyama D, et al. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression. Am J Physiol Lung Cell Mol Physiol, 2021, 321(1): L65-L78.
- 31. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol, 2015, 16(1): 36-44.
- 32. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med, 2014, 20(2): 159-166.
- 33. Manni ML, Heinrich VA, Buchan GJ, et al. Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Sci Rep, 2021, 11(1): 17788.
- 34. Jia W, Xie GX, Jia WP. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128.
- 35. 張瀚文, 翁育清. 肥胖型哮喘發病機制及治療進展. 嶺南急診醫學雜志, 2022, 27(02): 200-202.
- 36. Gürdeniz G, Ernst M, Rago D, et al. Neonatal metabolome of caesarean section and risk of childhood asthma. Eur Respir J, 2022, 59(6): 2102406.
- 37. Chang YD, Li CH, Tsai CH, et al. Aryl hydrocarbon receptor deficiency enhanced airway inflammation and remodeling in a murine chronic asthma model. FASEB J, 2020, 34(11): 15300-15313.
- 38. van der Sluijs KF, van de Pol MA, Kulik W, et al. Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design. Thorax, 2013, 68(12): 1122-1130.
- 39. 范文婷, 鐘世民, 胡琦, 等. 色氨酸代謝物調控Th17/Treg分化在小鼠哮喘變應原特異性免疫治療中的作用及機制研究. 第三軍醫大學學報, 2018, 40(8): 658-665.
- 40. Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med, 2020, 18(1): 456.
- 41. Cong YZ, Feng T, Fujihashi K, et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A, 2009, 106(46): 19256-19261.
- 42. Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol, 2012, 12(12): 821-832.
- 43. Bunker JJ, Erickson SA, Flynn TM, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science, 2017, 358(6361): eaan6619.
- 44. Dzidic M, Abrahamsson TR, Artacho A, et al. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. J Allergy Clin Immunol, 2017, 139(3): 1017-1025. e14.
- 45. Kau AL, Planer JD, Liu J, et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med, 2015, 7(276): 276ra24.
- 46. Zhang XZ, Borbet TC, Fallegger A, et al. An antibiotic-impacted microbiota compromises the development of colonic regulatory T cells and predisposes to dysregulated immune responses. mBio, 2021, 12(1): e03335-20.
- 47. Cait A, Hughes MR, Antignano F, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol, 2018, 11(3): 785-795.
- 48. Bradley CP, Teng F, Felix KM, et al. Segmented Filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe, 2017, 22(5): 697-704, e4.
- 49. 李賤, 鄒朋成, 楊莉容, 等. Th17細胞在哮喘發病中的作用研究進展. 中國呼吸與危重監護雜志, 2013, 12(3): 322-324.
- 50. Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell, 2021, 184(15): 3884-3898, e11.
- 51. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 2009, 139(3): 485-498.
- 52. Li LZ, Fang ZF, Lee YK, et al. Prophylactic effects of oral administration of Lactobacillus casei on house dust mite-induced asthma in mice. Food Funct, 2020, 11(10): 9272-9284.
- 53. Wilburn AN, McAlees JW, Haslam DB, et al. Delayed microbial maturation durably exacerbates Th17 driven asthma in mice. Am J Respir Cell Mol Biol, 2023, 68(5): 498-510.
- 54. Mamantopoulos M, Frising UC, Asaoka T, et al. El Tor Biotype Vibrio cholerae activates the caspase-11-independent canonical Nlrp3 and Pyrin inflammasomes. Front Immunol, 2019, 10: 2463.
- 55. Seo SU, Kamada N, Mu?oz-Planillo R, et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity, 2015, 42(4): 744-755.
- 56. Umiker B, Lee HH, Cope J, et al. The NLRP3 inflammasome mediates DSS-induced intestinal inflammation in Nod2 knockout mice. Innate Immun, 2019, 25(2): 132-143.
- 57. Niu JL, Cui MM, Yang X, et al. Microbiota-derived acetate enhances host antiviral response via NLRP3. Nat Commun, 2023, 14(1): 642.
- 58. Zhang Q, Ran X, He Y, et al. Acetate downregulates the activation of NLRP3 inflammasomes and attenuates lung injury in neonatal mice with bronchopulmonary dysplasia. Front Pediatr, 2021, 8: 595157.
- 59. Crosby CM, Kronenberg M. Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol, 2018, 18(9): 559-574.
- 60. Olszak T, An DD, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 2012, 336(6080): 489-493.
- 61. Wingender G, Stepniak D, Krebs P, et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology, 2012, 143(2): 418-428.
- 62. Michels KR, Lukacs NW, Fonseca W. TLR activation and allergic disease: early life microbiome and treatment. Curr Allergy Asthma Rep, 2018, 18(11): 61.
- 63. Braun-Fahrl?nder C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med, 2002, 347(12): 869-877.
- 64. Rautava S, Kainonen E, Salminen S, et al. Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant. J Allergy Clin Immunol, 2012, 130(6): 1355-1360.
- 65. Conrad ML, Ferstl R, Teich R, et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med, 2009, 206(13): 2869-2877.
- 66. 徐程, 徐欣欣, 田燁, 等. 下呼吸道流感嗜血桿菌定植通過Toll樣受體4影響哮喘小鼠免疫失衡. 診斷學理論與實踐, 2022, 21(4): 470-475.
- 67. Han D, Walsh MC, Cejas PJ, et al. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity, 2013, 38(6): 1211-1222.
- 68. Wang W, Li Y, Han G, et al. Lactobacillus fermentum CECT5716 alleviates the inflammatory response in asthma by regulating TLR2/TLR4 expression. Front Nutr, 2022, 9: 931427.
- 69. Zhang J, Ma JY, Li QH, et al. Exploration of the effect of mixed probiotics on microbiota of allergic asthma mice. Cell Immunol, 2021, 367: 104399.
- 70. Abbasi-Dokht T, Sadrifar S, Forouzandeh S, et al. Multistrain probiotics supplement alleviates asthma symptoms via increasing Treg cells population: a randomized, double-blind, placebo-controlled trial. Int Arch Allergy Immunol, 2023, 184(3): 291-301.
- 71. Schabussova I, Hufnagl K, Tang ML, et al. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS One, 2012, 7(7): e40271.
- 72. Sadrifar S, Abbasi-Dokht T, Forouzandeh S, et al. The impact of multistrains of probiotics on Th17-related cytokines in patients with asthma: a randomized, double-blind, placebo-controlled trial. J Asthma, 2023, 60(7): 1306-1315.
- 73. Pellaton C, Nutten S, Thierry AC, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflam, 2012, 2012: 686739.
- 74. Spacova I, Petrova MI, Fremau A, et al. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen-induced allergic asthma in a murine model. Allergy, 2019, 74(1): 100-110.
- 75. Spacova I, Van Beeck W, Seys S, et al. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes, 2020, 11(6): 1729-1744.
- 76. Wu ZW, Mehrabi Nasab E, Arora P, et al. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J Transl Med, 2022, 20(1): 130.
- 77. Williams NT. Probiotics. Am J Health Syst Pharm, 2010, 67(6): 449-458.
- 78. Venter C, Meyer RW, Greenhawt M, et al. Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy, 2022, 77(11): 3185-3198.
- 79. Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun, 2015, 6: 7320.
- 80. Ivakhnenko O, Niankovskyy S. Effect of the specific infant formula mixture of oligosaccharides on local immunity and development of allergic and infectious disease in young children: randomized study. Pediatria Polska, 2013, 88(5): 398-404.
- 81. Berthon BS, Macdonald-Wicks LK, Gibson PG, et al. Investigation of the association between dietary intake, disease severity and airway inflammation in asthma. Respirology, 2013, 18(3): 447-454.
- 82. Saeed MA, Gribben KC, Alam M, et al. Association of dietary fiber on asthma, respiratory symptoms, and inflammation in the adult national health and nutrition examination survey population. Ann Am Thorac Soc, 2020, 17(9): 1062-1068.
-
Previous Article
機器學習在膿毒癥及危重癥患者預后評估中的應用 -
Next Article
肺部微生物組與肺癌發展及治療關系的研究進展

