| 1. |
Acosta GJ, Singh Ospina N, Brito JP. Epidemiologic changes in thyroid disease. Curr Opin Endocrinol Diabetes Obes, 2024, 31(5): 184-190.
|
| 2. |
Zhang X, Wang X, Hu H, et al. Prevalence and trends of thyroid disease among adults, 1999-2018. Endocr Pract, 2023, 29(11): 875-880.
|
| 3. |
Jia X, Li J, Jiang Z. Association between thyroid disorders and extra-thyroidal cancers, a review. Clin Transl Oncol, 2024, 26(9): 2075-2083.
|
| 4. |
Tang Y, Zhu B, Wen X, et al. Development of a prediction model for the association between thyroid dysfunction and breast cancer. Transl Cancer Res, 2024, 13(6): 2790-2798.
|
| 5. |
Rahimi N, Feizi I, Mashayekhi F, et al. Evaluation of the thyroid and hypothyroid function after postoperative radiation therapy among breast cancer patients. Can Oncol Nurs J, 2024, 34(4): 477-489.
|
| 6. |
Liu H, Hou CJ, Tang JL, et al. Predictive model for the diagnosis of benign/malignant complex cystic and solid breast nodules. Discov Med, 2023, 35(176): 221-232.
|
| 7. |
沈潔, 劉雅靜, 莫淼, 等. 人工智能輔助超聲對中國女性乳腺病灶識別的有效性研究. 中國癌癥雜志, 2023, 33(11): 1002-1008.
|
| 8. |
蔡佳倜, 殷晉, 周帆, 等. 面向醫學影像圖像分類: 基于深度學習的多模態融合發展趨勢. 中國普外基礎與臨床雜志, 2025, 32(7): 793-800.
|
| 9. |
Petrillo A, Fusco R, Barretta ML, et al. Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging to predict Breast Cancer Histological Outcome. Radiol Med, 2023, 128(11): 1347-1371.
|
| 10. |
中華醫學會內分泌學分會, 中國醫師協會內分泌代謝科醫師分會, 中華醫學會核醫學分會, 等. 中國甲狀腺功能亢進癥和其他原因所致甲狀腺毒癥診治指南. 國際內分泌代謝雜志, 2022, 42(5): 401-450.
|
| 11. |
中華醫學會, 中華醫學會雜志社, 中華醫學會全科醫學分會, 等. 甲狀腺功能減退癥基層診療指南 (2019年). 中華全科醫師雜志, 2019, 18(11): 1022-1028.
|
| 12. |
吳宗汶, 廖亞周, 黃乘勝, 等. 乳腺癌與甲狀腺癌的發病相關性分析. 安徽醫藥, 2025, 29(2): 306-309.
|
| 13. |
Wang YW, Kuo TT, Chou YH, et al. Breast tumor classification using short-resnet with pixel-based tumor probability map in ultrasound images. Ultrason Imaging, 2023, 45(2): 74-84.
|
| 14. |
陳燕, 石一涵, 邢雷, 等. 超聲造影在評估乳腺癌腋窩及內乳淋巴結轉移中的價值. 中國普外基礎與臨床雜志, 2023, 30(3): 333-337.
|
| 15. |
Sun P, Guo R, Hu X, et al. Predicting axillary lymph node metastasis in breast cancer based on ultrasound radiofrequency time-series analysis. Acta Radiol, 2024, 65(10): 1178-1185.
|
| 16. |
Zhang D, Zhou W, Lu WW, et al. Ultrasound-based deep learning radiomics nomogram for the assessment of lymphovascular invasion in invasive breast cancer: a multicenter study. Acad Radiol, 2024, 31(10): 3917-3928.
|
| 17. |
Zhao W, Su X, Guo Y, et al. Deep learning based ultrasonic visualization of distal humeral cartilage for image-guided therapy: a pilot validation study. Quant Imaging Med Surg, 2023, 13(8): 5306-5320.
|
| 18. |
Luo X, Li Z, Xu C, et al. Semi-supervised thyroid nodule detection in ultrasound videos. IEEE Trans Med Imaging, 2024, 43(5): 1792-1803.
|
| 19. |
Wang J, Jiang J, Zhang D, et al. An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules. Eur Radiol, 2022, 32(3): 2120-2129.
|
| 20. |
Lan T, Kuang S, Liang P, et al. MRI-based deep learning and radiomics for prediction of occult cervical lymph node metastasis and prognosis in early-stage oral and oropharyngeal squamous cell carcinoma: a diagnostic study. Int J Surg, 2024, 110(8): 4648-4659.
|