- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, P. R. China;
As a heterogeneous disease characterized by changes in cardiac structure or function, cardiomyopathy has a significant impact on the quality of life of patients. And the gut microbiota, as the “second genome”, can regulate cardiac function through the “gut-heart axis”, providing a new perspective for the prevention and treatment of cardiomyopathy. This article summarizes the types and quantitative characteristics of gut microbiota in patients with cardiomyopathy. From the perspective of direct effects and indirect effects of metabolites such as short chain fatty acids, trimethylamine oxide, and bile acids, the mechanisms by which gut microbiota affects cardiomyopathy are explained. And the therapeutic effects of various gut microbiota regulation methods, such as dietary regulation, traditional Chinese medicine regulation, probiotics and prebiotics regulation on cardiomyopathy are explored, in order to provide reference for scientific regulation of gut microbiota in the prevention and treatment of cardiomyopathy.
Copyright ? the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
| 1. | Shore S, Ervin C, Kosa K, et al. Qualitative interview study of patient-reported symptoms, impacts and treatment goals of patients with obstructive hypertrophic cardiomyopathy. BMJ Open, 2024, 14(9): e081323. |
| 2. | Zhang Y, Liu MH, Li PJ, et al. Burden and management competency of cardiomyopathies in China: a nationwide survey study. Lancet Reg Health West Pac, 2024, 46: 101062. |
| 3. | Fu QH, Song TY, Ma XQ, et al. Research progress on relationship between intestinal microecology and intestinal bowel disease. Anim Model Exp Med, 2022, 5(4): 297-310. |
| 4. | 楊開燕, 魏惠平, 王記, 等. 基于腸心軸學說探討腸道菌群在心血管疾病中的作用. 中國現代應用藥學, 2023, 40(24): 3467-3472.Yang KY, Wei HP, Wang J, et al. Investigate role of intestinal flora in cardiovascular diseases based on intestinal axis theory. Chin J Mod Appl Pharm, 2023, 40(24): 3467-3472. |
| 5. | Wang YS, Xie YD, Mahara G, et al. Intestinal microbiota and metabolome perturbations in ischemic and idiopathic dilated cardiomyopathy. J Transl Med, 2024, 22(1): 89. |
| 6. | Deng F, Chen Y, Sun QS, et al. Gut microbiota dysbiosis is associated with sepsis-induced cardiomyopathy in patients: a case-control study. J Med Virol, 2022, 95(1): e28380. |
| 7. | 王喜文, 鄭佳, 湯漾, 等. 腸道菌群及其代謝產物對心肌纖維化影響與治療的研究進展. 微生物學報, 2023, 63(9): 3464-3481.Wang XW, Zheng J, Tang Y, et al. Gut microbiota and its metabolites affect and help to treat myocardial fibrosis. Acta Microbiol Sin, 2023, 63(9): 3464-3481. |
| 8. | Fan Y, Ying JJ, Ma HC, et al. Microbiota-related metabolites fueling understanding of ischemic heart disease. iMeta, 2023, 2(2): e94. |
| 9. | Bastin M, Andreelli F. Gut microbiota and diabetic cardiomyopathy in humans. Diabetes Metab, 2020, 46(3): 197-202. |
| 10. | Chen Y, Zhang F, Ye X, et al. Association between gut dysbiosis and sepsis-induced myocardial dysfunction in patients with sepsis or septic shock. Front Cell Infect Microbiol, 2022, 12: 857035. |
| 11. | Zhu Y, Zhang H, Zhao X, et al. Machine learning analysis of ARVC informed by sodium channel protein-based interactome networks. Front Pharmacol, 2025, 16: 1611342. |
| 12. | 陳傳偉, 楊蘭增, 趙會芬. 老年缺血性心肌病患者腸道菌群特征及其與心功能的相關性. 實驗與檢驗醫學, 2020, 38(3): 540-543,581.Chen CW, Yang LZ, Zhao HF. Characteristics of gut microbiota in elderly patients with ischemic cardiomyopathy and correlation with cardiac function. Exp Lab Med, 2020, 38(3): 540-543,581. |
| 13. | 程安然, 崔德芝. 中藥調節糖尿病心肌病患者腸道菌群失調機制研究進展. 中草藥, 2024, 55(8): 2792-2799.Cheng AR, Cui DZ. Research progress on mechanism of traditional Chinese medicine regulating intestinal flora imbalance in patients with diabetic cardiomyopathy. Chin Tradit Herb Drugs, 2024, 55(8): 2792-2799. |
| 14. | Tang N, Tian W, Ma GY, et al. TRPC channels blockade abolishes endotoxemic cardiac dysfunction by hampering intracellular inflammation and Ca2+ leakage. Nat Commun, 2022, 13(1): 7455. |
| 15. | Baik SH, Ramanujan VK, Becker C, et al. Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP3 inflammasome assembly and activation. Sci Immunol, 2023, 8(84): eade7652. |
| 16. | Finlay BB, Goldszmid R, Honda K, et al. Can we harness microbiota to enhance efficacy of cancer immunotherapy? Nat Rev Immunol, 2020, 20(9): 522-528. |
| 17. | Tomasova L, Grman M, Ondrias K, et al. Impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr Metab (Lond), 2021, 18(1): 72. |
| 18. | Gil S, Garg N, Debelius J, et al. Specialized metabolites from microbiome in health and disease. Cell Metab, 2014, 20(5): 719-730. |
| 19. | Glatz JFC, Luiken JJFP, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev, 2010, 90(1): 367-417. |
| 20. | Nogal A, Valdes AM, Menni C. Role of short-chain fatty acids in interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 2021, 13(1): 1-24. |
| 21. | Wang JY, Zhang XF, Yang XY, et al. Revitalizing myocarditis treatment through gut microbiota modulation: unveiling a promising therapeutic avenue. Front Cell Infect Microbiol, 2023, 13: 1191936. |
| 22. | Chambers ES, Preston T, Frost G, et al. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep, 2028, 7(4): 198-206. |
| 23. | 朱蘇紅, 林麗文, 王友, 等. 短鏈脂肪酸在心血管疾病中的作用. 中國新藥與臨床雜志, 2022, 41(11): 651-655.Zhu SH, Lin LW, Wang Y, et al. Role of short chain fatty acid in cardiovascular disease. Chin J New Drugs Clin Remedies, 2022, 41(11): 651-655. |
| 24. | Liu C, Yu H, Xia HY, et al. Butyrate attenuates sympathetic activation in rats with chronic heart failure by inhibiting microglial inflammation in paraventricular nucleus. Acta Biochim Biophys Sin, 2024, 56(1): 140-149. |
| 25. | Wang W, Dernst A, Martin B, et al. Butyrate and propionate are microbial danger signals that activate NLRP3 inflammasome in human macrophages upon TLR stimulation. Cell Rep, 2024, 43(9): 114736. |
| 26. | He ZY, Kwek E, Hao WJ, et al. Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation. Nutr Metab (Lond), 2021, 18(1): 6. |
| 27. | Savi M, Bocchi L, Bresciani L, et al. Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and protective role of urolithin B-glucuronide. Molecules, 2018, 23(3): 549. |
| 28. | Chen ML, Zhu XH, Ran L, et al. Trimethylamine-N-oxide induces vascular inflammation by activating NLRP3 inflammasome through SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc, 2017, 6(11): e002238. |
| 29. | Sun XL, Jiao XF, Ma YR, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun, 2026, 481(1-2): 63-70. |
| 30. | Makrecka-Kuka M, Volska K, Antone U, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicol Lett, 2027, 267: 32-38. |
| 31. | Dong Z, Liang Z, Wang X, et al. Correlation between plasma trimethylamine N-oxide level and heart failure classification in northern Chinese patients. Ann Palliat Med, 2020, 9(5): 2574-2582. |
| 32. | Almer G, Enko D, Kartiosuo N, et al. Association of serum trimethylamine-N-oxide concentration from childhood to early adulthood with age and sex. Clin Chem, 2024, 70(1): 234-244. |
| 33. | Joubert P. Cholic acid and heart: in vitro studies of effect on heart rate and myocardial contractility in rat. Clin Exp Pharmacol Physiol, 1978, 5(1): 9-16. |
| 34. | Guan BY, Tong JL, Hao HP, et al. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases. Acta Pharm Sin B, 2022, 12(5): 2129-2149. |
| 35. | 楊曦, 孫雄山, 羅涵, 等. TGR5在心血管疾病中的作用研究進展. 解放軍醫學雜志, 2024, 49(6): 711-717.Yang X, Sun XS, Luo H, et al. Research progress on role of TGR5 in cardiovascular diseases. Med J Chin People's Liber Army, 2024, 49(6): 711-717. |
| 36. | Williamson C, Gorelik J, Eaton BM, et al. Bile acid taurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis. Clin Sci (Lond), 2001, 100(4): 363-369. |
| 37. | Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change gut microbiota and prevent development of hypertension and heart failure in hypertensive mice. Circulation, 2017, 135(10): 964-977. |
| 38. | Juraschek SP, Kovell LC, Appel LJ, et al. Effects of diet and sodium reduction on cardiac injury, strain, and inflammation: The DASH-Sodium Trial. J Am Coll Cardiol, 2021, 77(21): 2625-2634. |
| 39. | Yang B, Zhao YJ, Luo W, et al. Macrophage DCLK1 promotes obesity-induced cardiomyopathy via activating RIP2/TAK1 signaling pathway. Cell Death Dis, 2023, 14(7): 419. |
| 40. | Delgado-Lista J, Alcala-Diaz JF, Torres-Pe?a JD, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet, 2022, 399(10338): 1876-1885. |
| 41. | Kleissl-Muir S, Owen A, Rasmussen B, et al. Effects of a low carbohydrate diet on heart failure symptoms and quality of life in patients with diabetic cardiomyopathy: a randomised controlled trial pilot study. Nutr Metab Cardiovasc Dis, 2023, 33(12): 2455-2463. |
| 42. | Glenn AJ, Wang FL, Tessier AJ, et al. Dietary plant-to-animal protein ratio and risk of cardiovascular disease in 3 prospective cohorts. Am J Clin Nutr, 2024, 120(6): 1373-1386. |
| 43. | Palomar-Cros A, Andreeva VA, Fezeu LK, et al. Dietary circadian rhythms and cardiovascular disease risk in prospective NutriNet-Santé cohort. Nat Commun, 2023, 14(1): 7899. |
| 44. | Hu XW, Xia K, Dai MH, et al. Intermittent fasting modulates intestinal microbiota and improves obesity and host energy metabolism. NPJ Biofilms Microbiomes, 2023, 9(1): 19. |
| 45. | Ozcan M, Guo Z, Ripoll CV, et al. Sustained alternate-day fasting potentiates doxorubicin cardiotoxicity. Cell Metab, 2023, 35(6): 928-942. e4. |
| 46. | Du ZY, Wang JL, Lu YY, et al. Cardiac protection of Baoyuan decoction via gut-heart axis metabolic pathway. Phytomedicine, 2020, 79: 153322. |
| 47. | Du SB, Zhou HH, Wang PF, et al. Modulation effects of danshen-honghua herb pair on gut microbiota of acute myocardial ischemia model rat. FEMS Microbiol Lett, 2022, 369(1): fnac036. |
| 48. | Shi LP, Du XQ, Zuo B, et al. Qige Huxin Formula attenuates isoprenaline-induced cardiac fibrosis in mice via modulating gut microbiota and protecting intestinal integrity. Evid Based Complement Alternat Med, 2022, 2022: 2894659. |
| 49. | Zhou GF, Jiang YH, Ma DF, et al. Xiao-Qing-Long Tang prevents cardiomyocyte hypertrophy, fibrosis, and development of heart failure with preserved ejection fraction in rats by modulating composition of gut microbiota. Biomed Res Int, 2019, 2019: 9637479. |
| 50. | Li XP, Xu GM, Wei SJ, et al. Lingguizhugan decoction attenuates doxorubicin-induced heart failure in rats by improving TT-SR microstructural remodeling. BMC Complement Altern Med, 2019, 19(1): 360. |
| 51. | Zhong XQ, Zhao YC, Huang L, et al. Remodeling of gut microbiome by Lactobacillus johnsonii alleviates development of acute myocardial infarction. Front Microbiol, 2023, 14: 1140498. |
| 52. | Pham QH, Bui TV, Sim WS, et al. Daily oral administration of probiotics engineered to constantly secrete short-chain fatty acids effectively prevents myocardial injury from subsequent ischaemic heart disease. Cardiovasc Res, 2024, 120(14): 1737-1751. |
| 53. | Chiang CJ, Tsai BCK, Lu TL, et al. Diabetes-induced cardiomyopathy is ameliorated by heat-killed Lactobacillus reuteri GMNL-263 in diabetic rats via repression of toll-like receptor 4 pathway. Eur J Nutr, 2021, 60(6): 3211-3223. |
| 54. | Sarfaraz S, Singh S, Hawke A, et al. Effects of high-fat diet induced obesity and fructooligosaccharide supplementation on cardiac protein expression. Nutrients, 2020, 12(11): 3404. |
| 55. | Kaye DM, Shihata WA, Jama HA, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation, 2020, 141(17): 1393-1403. |
| 56. | Moludi J, Khedmatgozar H, Nachvak SM, et al. Effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial. Nutr Neurosci, 2021, 25(8): 1659-1668. |
| 57. | Hu XF, Zhang WY, Wen Q, et al. Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring microbiota composition. Pharmacol Res, 2019, 139: 412-421. |
| 58. | Liu ZH, Liu HY, Zhou HB, et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front Microbiol, 2017, 8: 1687. |
| 59. | 張文超. 抑制TMAO生成對慢性腎臟病及相關心血管損害的作用及機制研究. 山東大學, 2021.Zhang WC. Inhibition of TMAO production attenuates chronic kidney disease and related cardiovascular damage. Shandong University, 2021. |
| 60. | 邢藝璇. 水蘇糖和利福昔明靶向腸道菌群改善糖尿病心肌病的作用及機制. 中南大學, 2022.Xing YX. Stachyose and rifaximin targeting intestinal microbiota in improving diabetic cardiomyopathy: efficacies and mechanisms. Central South University, 2022. |
| 61. | 黃鑫. 基于腸道菌群探討益氣活血中藥治療膿毒癥心肌病的作用機制. 廣州中醫藥大學, 2029.Huang X. Experimental study on mechanism of Yigi Huoxue drugs in treatment of sepsis cardiomyopathy based on intestinal flora. Guangzhou University of Chinese Medicine, 2019. |
| 62. | Kirk D, Costeira R, Visconti A, et al. Bacteriophages, gut bacteria, and microbial pathways interplay in cardiometabolic health. Cell Rep, 2024, 43(2): 113728. |
| 63. | Khalaf EM, Hassan HM, ElBaz AM, et al. Novel therapeutic combination of dapagliflozin, Lactobacillus and crocin attenuates diabetic cardiomyopathy in rats: role of oxidative stress, gut microbiota, and PPARγ activation. Eur J Pharmacol, 2022, 931: 175172. |
- 1. Shore S, Ervin C, Kosa K, et al. Qualitative interview study of patient-reported symptoms, impacts and treatment goals of patients with obstructive hypertrophic cardiomyopathy. BMJ Open, 2024, 14(9): e081323.
- 2. Zhang Y, Liu MH, Li PJ, et al. Burden and management competency of cardiomyopathies in China: a nationwide survey study. Lancet Reg Health West Pac, 2024, 46: 101062.
- 3. Fu QH, Song TY, Ma XQ, et al. Research progress on relationship between intestinal microecology and intestinal bowel disease. Anim Model Exp Med, 2022, 5(4): 297-310.
- 4. 楊開燕, 魏惠平, 王記, 等. 基于腸心軸學說探討腸道菌群在心血管疾病中的作用. 中國現代應用藥學, 2023, 40(24): 3467-3472.Yang KY, Wei HP, Wang J, et al. Investigate role of intestinal flora in cardiovascular diseases based on intestinal axis theory. Chin J Mod Appl Pharm, 2023, 40(24): 3467-3472.
- 5. Wang YS, Xie YD, Mahara G, et al. Intestinal microbiota and metabolome perturbations in ischemic and idiopathic dilated cardiomyopathy. J Transl Med, 2024, 22(1): 89.
- 6. Deng F, Chen Y, Sun QS, et al. Gut microbiota dysbiosis is associated with sepsis-induced cardiomyopathy in patients: a case-control study. J Med Virol, 2022, 95(1): e28380.
- 7. 王喜文, 鄭佳, 湯漾, 等. 腸道菌群及其代謝產物對心肌纖維化影響與治療的研究進展. 微生物學報, 2023, 63(9): 3464-3481.Wang XW, Zheng J, Tang Y, et al. Gut microbiota and its metabolites affect and help to treat myocardial fibrosis. Acta Microbiol Sin, 2023, 63(9): 3464-3481.
- 8. Fan Y, Ying JJ, Ma HC, et al. Microbiota-related metabolites fueling understanding of ischemic heart disease. iMeta, 2023, 2(2): e94.
- 9. Bastin M, Andreelli F. Gut microbiota and diabetic cardiomyopathy in humans. Diabetes Metab, 2020, 46(3): 197-202.
- 10. Chen Y, Zhang F, Ye X, et al. Association between gut dysbiosis and sepsis-induced myocardial dysfunction in patients with sepsis or septic shock. Front Cell Infect Microbiol, 2022, 12: 857035.
- 11. Zhu Y, Zhang H, Zhao X, et al. Machine learning analysis of ARVC informed by sodium channel protein-based interactome networks. Front Pharmacol, 2025, 16: 1611342.
- 12. 陳傳偉, 楊蘭增, 趙會芬. 老年缺血性心肌病患者腸道菌群特征及其與心功能的相關性. 實驗與檢驗醫學, 2020, 38(3): 540-543,581.Chen CW, Yang LZ, Zhao HF. Characteristics of gut microbiota in elderly patients with ischemic cardiomyopathy and correlation with cardiac function. Exp Lab Med, 2020, 38(3): 540-543,581.
- 13. 程安然, 崔德芝. 中藥調節糖尿病心肌病患者腸道菌群失調機制研究進展. 中草藥, 2024, 55(8): 2792-2799.Cheng AR, Cui DZ. Research progress on mechanism of traditional Chinese medicine regulating intestinal flora imbalance in patients with diabetic cardiomyopathy. Chin Tradit Herb Drugs, 2024, 55(8): 2792-2799.
- 14. Tang N, Tian W, Ma GY, et al. TRPC channels blockade abolishes endotoxemic cardiac dysfunction by hampering intracellular inflammation and Ca2+ leakage. Nat Commun, 2022, 13(1): 7455.
- 15. Baik SH, Ramanujan VK, Becker C, et al. Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP3 inflammasome assembly and activation. Sci Immunol, 2023, 8(84): eade7652.
- 16. Finlay BB, Goldszmid R, Honda K, et al. Can we harness microbiota to enhance efficacy of cancer immunotherapy? Nat Rev Immunol, 2020, 20(9): 522-528.
- 17. Tomasova L, Grman M, Ondrias K, et al. Impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr Metab (Lond), 2021, 18(1): 72.
- 18. Gil S, Garg N, Debelius J, et al. Specialized metabolites from microbiome in health and disease. Cell Metab, 2014, 20(5): 719-730.
- 19. Glatz JFC, Luiken JJFP, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev, 2010, 90(1): 367-417.
- 20. Nogal A, Valdes AM, Menni C. Role of short-chain fatty acids in interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 2021, 13(1): 1-24.
- 21. Wang JY, Zhang XF, Yang XY, et al. Revitalizing myocarditis treatment through gut microbiota modulation: unveiling a promising therapeutic avenue. Front Cell Infect Microbiol, 2023, 13: 1191936.
- 22. Chambers ES, Preston T, Frost G, et al. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep, 2028, 7(4): 198-206.
- 23. 朱蘇紅, 林麗文, 王友, 等. 短鏈脂肪酸在心血管疾病中的作用. 中國新藥與臨床雜志, 2022, 41(11): 651-655.Zhu SH, Lin LW, Wang Y, et al. Role of short chain fatty acid in cardiovascular disease. Chin J New Drugs Clin Remedies, 2022, 41(11): 651-655.
- 24. Liu C, Yu H, Xia HY, et al. Butyrate attenuates sympathetic activation in rats with chronic heart failure by inhibiting microglial inflammation in paraventricular nucleus. Acta Biochim Biophys Sin, 2024, 56(1): 140-149.
- 25. Wang W, Dernst A, Martin B, et al. Butyrate and propionate are microbial danger signals that activate NLRP3 inflammasome in human macrophages upon TLR stimulation. Cell Rep, 2024, 43(9): 114736.
- 26. He ZY, Kwek E, Hao WJ, et al. Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation. Nutr Metab (Lond), 2021, 18(1): 6.
- 27. Savi M, Bocchi L, Bresciani L, et al. Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and protective role of urolithin B-glucuronide. Molecules, 2018, 23(3): 549.
- 28. Chen ML, Zhu XH, Ran L, et al. Trimethylamine-N-oxide induces vascular inflammation by activating NLRP3 inflammasome through SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc, 2017, 6(11): e002238.
- 29. Sun XL, Jiao XF, Ma YR, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun, 2026, 481(1-2): 63-70.
- 30. Makrecka-Kuka M, Volska K, Antone U, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicol Lett, 2027, 267: 32-38.
- 31. Dong Z, Liang Z, Wang X, et al. Correlation between plasma trimethylamine N-oxide level and heart failure classification in northern Chinese patients. Ann Palliat Med, 2020, 9(5): 2574-2582.
- 32. Almer G, Enko D, Kartiosuo N, et al. Association of serum trimethylamine-N-oxide concentration from childhood to early adulthood with age and sex. Clin Chem, 2024, 70(1): 234-244.
- 33. Joubert P. Cholic acid and heart: in vitro studies of effect on heart rate and myocardial contractility in rat. Clin Exp Pharmacol Physiol, 1978, 5(1): 9-16.
- 34. Guan BY, Tong JL, Hao HP, et al. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases. Acta Pharm Sin B, 2022, 12(5): 2129-2149.
- 35. 楊曦, 孫雄山, 羅涵, 等. TGR5在心血管疾病中的作用研究進展. 解放軍醫學雜志, 2024, 49(6): 711-717.Yang X, Sun XS, Luo H, et al. Research progress on role of TGR5 in cardiovascular diseases. Med J Chin People's Liber Army, 2024, 49(6): 711-717.
- 36. Williamson C, Gorelik J, Eaton BM, et al. Bile acid taurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis. Clin Sci (Lond), 2001, 100(4): 363-369.
- 37. Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change gut microbiota and prevent development of hypertension and heart failure in hypertensive mice. Circulation, 2017, 135(10): 964-977.
- 38. Juraschek SP, Kovell LC, Appel LJ, et al. Effects of diet and sodium reduction on cardiac injury, strain, and inflammation: The DASH-Sodium Trial. J Am Coll Cardiol, 2021, 77(21): 2625-2634.
- 39. Yang B, Zhao YJ, Luo W, et al. Macrophage DCLK1 promotes obesity-induced cardiomyopathy via activating RIP2/TAK1 signaling pathway. Cell Death Dis, 2023, 14(7): 419.
- 40. Delgado-Lista J, Alcala-Diaz JF, Torres-Pe?a JD, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet, 2022, 399(10338): 1876-1885.
- 41. Kleissl-Muir S, Owen A, Rasmussen B, et al. Effects of a low carbohydrate diet on heart failure symptoms and quality of life in patients with diabetic cardiomyopathy: a randomised controlled trial pilot study. Nutr Metab Cardiovasc Dis, 2023, 33(12): 2455-2463.
- 42. Glenn AJ, Wang FL, Tessier AJ, et al. Dietary plant-to-animal protein ratio and risk of cardiovascular disease in 3 prospective cohorts. Am J Clin Nutr, 2024, 120(6): 1373-1386.
- 43. Palomar-Cros A, Andreeva VA, Fezeu LK, et al. Dietary circadian rhythms and cardiovascular disease risk in prospective NutriNet-Santé cohort. Nat Commun, 2023, 14(1): 7899.
- 44. Hu XW, Xia K, Dai MH, et al. Intermittent fasting modulates intestinal microbiota and improves obesity and host energy metabolism. NPJ Biofilms Microbiomes, 2023, 9(1): 19.
- 45. Ozcan M, Guo Z, Ripoll CV, et al. Sustained alternate-day fasting potentiates doxorubicin cardiotoxicity. Cell Metab, 2023, 35(6): 928-942. e4.
- 46. Du ZY, Wang JL, Lu YY, et al. Cardiac protection of Baoyuan decoction via gut-heart axis metabolic pathway. Phytomedicine, 2020, 79: 153322.
- 47. Du SB, Zhou HH, Wang PF, et al. Modulation effects of danshen-honghua herb pair on gut microbiota of acute myocardial ischemia model rat. FEMS Microbiol Lett, 2022, 369(1): fnac036.
- 48. Shi LP, Du XQ, Zuo B, et al. Qige Huxin Formula attenuates isoprenaline-induced cardiac fibrosis in mice via modulating gut microbiota and protecting intestinal integrity. Evid Based Complement Alternat Med, 2022, 2022: 2894659.
- 49. Zhou GF, Jiang YH, Ma DF, et al. Xiao-Qing-Long Tang prevents cardiomyocyte hypertrophy, fibrosis, and development of heart failure with preserved ejection fraction in rats by modulating composition of gut microbiota. Biomed Res Int, 2019, 2019: 9637479.
- 50. Li XP, Xu GM, Wei SJ, et al. Lingguizhugan decoction attenuates doxorubicin-induced heart failure in rats by improving TT-SR microstructural remodeling. BMC Complement Altern Med, 2019, 19(1): 360.
- 51. Zhong XQ, Zhao YC, Huang L, et al. Remodeling of gut microbiome by Lactobacillus johnsonii alleviates development of acute myocardial infarction. Front Microbiol, 2023, 14: 1140498.
- 52. Pham QH, Bui TV, Sim WS, et al. Daily oral administration of probiotics engineered to constantly secrete short-chain fatty acids effectively prevents myocardial injury from subsequent ischaemic heart disease. Cardiovasc Res, 2024, 120(14): 1737-1751.
- 53. Chiang CJ, Tsai BCK, Lu TL, et al. Diabetes-induced cardiomyopathy is ameliorated by heat-killed Lactobacillus reuteri GMNL-263 in diabetic rats via repression of toll-like receptor 4 pathway. Eur J Nutr, 2021, 60(6): 3211-3223.
- 54. Sarfaraz S, Singh S, Hawke A, et al. Effects of high-fat diet induced obesity and fructooligosaccharide supplementation on cardiac protein expression. Nutrients, 2020, 12(11): 3404.
- 55. Kaye DM, Shihata WA, Jama HA, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation, 2020, 141(17): 1393-1403.
- 56. Moludi J, Khedmatgozar H, Nachvak SM, et al. Effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial. Nutr Neurosci, 2021, 25(8): 1659-1668.
- 57. Hu XF, Zhang WY, Wen Q, et al. Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring microbiota composition. Pharmacol Res, 2019, 139: 412-421.
- 58. Liu ZH, Liu HY, Zhou HB, et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front Microbiol, 2017, 8: 1687.
- 59. 張文超. 抑制TMAO生成對慢性腎臟病及相關心血管損害的作用及機制研究. 山東大學, 2021.Zhang WC. Inhibition of TMAO production attenuates chronic kidney disease and related cardiovascular damage. Shandong University, 2021.
- 60. 邢藝璇. 水蘇糖和利福昔明靶向腸道菌群改善糖尿病心肌病的作用及機制. 中南大學, 2022.Xing YX. Stachyose and rifaximin targeting intestinal microbiota in improving diabetic cardiomyopathy: efficacies and mechanisms. Central South University, 2022.
- 61. 黃鑫. 基于腸道菌群探討益氣活血中藥治療膿毒癥心肌病的作用機制. 廣州中醫藥大學, 2029.Huang X. Experimental study on mechanism of Yigi Huoxue drugs in treatment of sepsis cardiomyopathy based on intestinal flora. Guangzhou University of Chinese Medicine, 2019.
- 62. Kirk D, Costeira R, Visconti A, et al. Bacteriophages, gut bacteria, and microbial pathways interplay in cardiometabolic health. Cell Rep, 2024, 43(2): 113728.
- 63. Khalaf EM, Hassan HM, ElBaz AM, et al. Novel therapeutic combination of dapagliflozin, Lactobacillus and crocin attenuates diabetic cardiomyopathy in rats: role of oxidative stress, gut microbiota, and PPARγ activation. Eur J Pharmacol, 2022, 931: 175172.

