- 1. Oncology Teaching and Research Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China;
- 2. TCM Prevention and Treatment of Metabolic and Chronic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China;
Pulmonary organoids currently represent the most accurate in vitro model for mimicking the structure and function of the human lung, serving as a transformative tool in respiratory research and medical practice. However, their broad application is hindered by several challenges, including limited maturity, lack of standardization, unclear regulatory pathways, high costs, and difficulties in scaling production. This review systematically outlines the current research status and development trends of pulmonary organoids, with emphasis on their value as in vitro models and research platforms for elucidating the biological features and pathophysiological mechanisms of lung diseases. Special attention is given to their emerging role in traditional Chinese medicine (TCM), such as evaluating pharmacological effects of herbal compounds, screening active ingredients, and exploring mechanisms underlying TCM syndrome differentiation and treatment. The aim of this review is to provide comprehensive evidence to support precision diagnosis, drug development, and therapeutic strategies for respiratory diseases.
Copyright ? the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
| 1. | GBD 2019 Respiratory Tract Cancers Collaborators. Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Respir Med, 2021, 9(9): 1030-1049. |
| 2. | Liu X, Yang Q, Pan L, et al. Burden of respiratory tract cancers in China and its provinces, 1990-2021: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Reg Health West Pac, 2025, 55: 101485. |
| 3. | Barkauskas CE, Chung MI, Fioret B, et al. Lung organoids: current uses and future promise. Development, 2017, 144(6): 986-997. |
| 4. | Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses. Trends Mol Med, 2021, 27(12): 1159-1174. |
| 5. | Sen C, Freund D, Gomperts BN. Three-dimensional models of the lung: past, present and future: a mini review. Biochem Soc Trans, 2022, 50(2): 1045-1056. |
| 6. | Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol, 2020, 15: 211-234. |
| 7. | Ekanger CT, Zhou F, Bohan D, et al. Human organotypic airway and lung organoid cells of bronchiolar and alveolar differentiation are permissive to infection by influenza and SARS-CoV-2 respiratory virus. Front Cell Infect Microbiol, 2022, 12: 841447. |
| 8. | Alysandratos KD, Garcia-de-Alba C, Yao C, et al. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight, 2023, 8(1): e158937. |
| 9. | Hoareau L, Engelsen AST, Aanerud M, et al. Induction of alveolar and bronchiolar phenotypes in human lung organoids. Physiol Rep, 2021, 9(11): e14857. |
| 10. | Miller AJ, Hill DR, Nagy MS, et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Reports, 2018, 10(1): 101-119. |
| 11. | Joo H, Min S, Cho SW. Advanced lung organoids for respiratory system and pulmonary disease modeling. J Tissue Eng, 2024, 15: 20417314241232502. |
| 12. | Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165. |
| 13. | Dye BR, Hill DR, Ferguson MA, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife, 2015, 4: e05098. |
| 14. | Porotto M, Ferren M, Chen YW, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio, 2019, 10(3): e00723-19. |
| 15. | 15HESPEROS. Human-on-a-chip data enables clinical trial (NCT04658472) highlighting potential for in vitro approach in lieu of animal studies for rare neuromuscular disorders. Accessed on 2025-06-07. |
| 16. | Matkovic Leko I, Schneider RT, Thimraj TA, et al. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc, 2023, 18(7): 2283-2312. |
| 17. | Miao Y, Pek NM, Tan C, et al. Co-development of mesoderm and endoderm enables organotypic vascularization in lung and gut organoids. Cell, 2025, 188(16): 4295-4313. e27. |
| 18. | Chen YW, Huang SX, de Carvalho ALRT, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol, 2017, 19(5): 542-549. |
| 19. | Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature, 2022, 604(7904): 111-119. |
| 20. | Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc, 2019, 14(2): 518-540. |
| 21. | Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife, 2016, 5: e19732. |
| 22. | Dye BR, Youngblood RL, Oakes RS, et al. Human lung organoids develop into adult airway-like structures directed by physico-chemical biomaterial properties. Biomaterials, 2020, 234: 119757. |
| 23. | Clevers H. Modeling development and disease with organoids. Cell, 2016, 165(7): 1586-1597. |
| 24. | Beumer J, Geurts MH, Lamers MM, et al. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun, 2021, 12(1): 5498. |
| 25. | Lamers MM, van der Vaart J, Knoops K, et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type Ⅱ-like cells. EMBO J, 2021, 40(5): e105912. |
| 26. | Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol, 2018, 71-72: 112-127. |
| 27. | Lee J, Kim JH, Hong SH, et al. Organoid model in idiopathic pulmonary fibrosis. Int J Stem Cells, 2021, 14(1): 1-8. |
| 28. | Wisman M, Nizamoglu M, Noordhoek JA, et al. Dysregulated cross-talk between alveolar epithelial cells and stromal cells in idiopathic pulmonary fibrosis reduces epithelial regenerative capacity. Front Med (Lausanne), 2023, 10: 1182368. |
| 29. | Yao Y, Ritzmann F, Miethe S, et al. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. Mol Med, 2024, 30(1): 227. |
| 30. | Choi HK, Bang G, Shin JH, et al. Regenerative capacity of alveolar type 2 cells Is proportionally reduced following disease progression in idiopathic pulmonary fibrosis-derived organoid cultures. Tuberc Respir Dis (Seoul), 2025, 88(1): 130-137. |
| 31. | Sui J, Boatz JC, Shi J, et al. Loss of ANT1 increases fibrosis and epithelial cell senescence in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol, 2023, 69(5): 556-569. |
| 32. | Gokey JJ, Snowball J, Green J, et al. Pretreatment of aged mice with retinoic acid supports alveolar regeneration via upregulation of reciprocal PDGFA signalling. Thorax, 2021, 76(5): 456-467. |
| 33. | Ptasinski V, Monkley SJ, ?st K, et al. Modeling fibrotic alveolar transitional cells with pluripotent stem cell-derived alveolar organoids. Life Sci Alliance, 2023, 6(8): e202201853. |
| 34. | Strikoudis A, Cie?lak A, Loffredo L, et al. Modeling of fibrotic lung disease using 3D Organoids derived from human pluripotent stem cells. Cell Rep, 2019, 27(12): 3709-3723. e5. |
| 35. | Shaikh SB, Bhandary YP. CRISPR/Cas9 genome editing tool: a promising tool for therapeutic applications on respiratory diseases. Curr Gene Ther, 2020, 20(5): 333-346. |
| 36. | McKelvey MC, Weldon S, McAuley DF, et al. Targeting proteases in cystic fibrosis lung disease. paradigms, progress, and potential. Am J Respir Crit Care Med, 2020, 201(2): 141-147. |
| 37. | van Mourik P, Beekman JM, van der Ent CK. Intestinal organoids to model cystic fibrosis. Eur Respir J, 2019, 54(1): 1802379. |
| 38. | Liu Z, Anderson JD, Deng L, et al. Human nasal epithelial organoids for therapeutic development in cystic fibrosis. Genes (Basel), 2020, 11(6): 603. |
| 39. | Demchenko A, Kondrateva E, Tabakov V, et al. Airway and lung organoids from human-induced pluripotent stem cells can be used to assess CFTR conductance. Int J Mol Sci, 2023, 24(7): 6293. |
| 40. | Demchenko A, Belova L, Balyasin M, et al. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research. Front Cell Dev Biol, 2024, 12: 1336392. |
| 41. | Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling. EMBO J, 2019, 38(4): e100300. |
| 42. | Nicosia L, Pranke I, Latorre RV, et al. Adenine base editing with engineered virus-like particles rescues the CFTR mutation G542X in patient-derived intestinal organoids. iScience, 2025, 28(3): 111979. |
| 43. | Bulcaen M, Kortleven P, Liu RB, et al. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell Rep Med, 2024, 5(5): 101544. |
| 44. | Mejías JC, Nelson MR, Liseth O, et al. A 96-well format microvascularized human lung-on-a-chip platform for microphysiological modeling of fibrotic diseases. Lab Chip, 2020, 20(19): 3601-3611. |
| 45. | Plebani R, Potla R, Soong M, et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros, 2022, 21(4): 606-615. |
| 46. | Huo Y, He S, Chen Y. Lung organoids in COPD: recent advances and future prospects. Respir Res, 2025, 26(1): 76. |
| 47. | Lam HC, Choi AM, Ryter SW. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface. J Vis Exp, 2011(48): 2513. |
| 48. | Basil MC, Cardenas-Diaz FL, Kathiriya JJ, et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature, 2022, 604(7904): 120-126. |
| 49. | Wu X, Bos IST, Conlon TM, et al. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Sci Adv, 2022, 8(12): eabj9949. |
| 50. | Zhou F, Onizawa S, Nagai A, et al. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury. Respir Res, 2011, 12(1): 78. |
| 51. | Hu Y, Hu Q, Ansari M, et al. Airway-derived emphysema-specific alveolar typeⅡ cells exhibit impaired regenerative potential in COPD. Eur Respir J, 2024, 64(6): 2302071. |
| 52. | Wei YY, Zhang DW, Ye JJ, et al. Interleukin-6 neutralizing antibody attenuates the hypersecretion of airway mucus via inducing the nuclear translocation of Nrf2 in chronic obstructive pulmonary disease. Biomed Pharmacother, 2022, 152: 113244. |
| 53. | Carpenter J, Wang Y, Gupta R, et al. Assembly and organization of the N-terminal region of mucin MUC5AC: Indications for structural and functional distinction from MUC5B. Proc Natl Acad Sci U S A, 2021, 118(39): e2104490118. |
| 54. | Chan LLY, Anderson DE, Cheng HS, et al. The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun, 2022, 13(1): 7635. |
| 55. | Cunniff B, Druso JE, van der Velden JL. Lung organoids: advances in generation and 3D-visualization. Histochem Cell Biol, 2021, 155(2): 301-308. |
| 56. | Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011, 141(5): 1762-1772. |
| 57. | Kim M, Mun H, Sung CO, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun, 2019, 10(1): 3991. |
| 58. | Miura A, Yamada D, Nakamura M, et al. Oncogenic potential of human pluripotent stem cell-derived lung organoids with HER2 overexpression. Int J Cancer, 2021, 149(8): 1593-1604. |
| 59. | Liu Y, Chudgar N, Mastrogiacomo B, et al. A germline SNP in BRMS1 predisposes patients with lung adenocarcinoma to metastasis and can be ameliorated by targeting c-fos. Sci Transl Med, 2022, 14(665): eabo1050. |
| 60. | Choi YM, Lee H, Ann M, et al. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication, 2023, 15(3): 034104. |
| 61. | Li Z, Qian Y, Li W, et al. Human lung adenocarcinoma-derived organoid models for drug screening. iScience, 2020, 23(8): 101411. |
| 62. | Wang HM, Zhang CY, Peng KC, et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med, 2023, 4(2): 100911. |
| 63. | Ta? ?, Jacobs R, Albrecht J, et al. Advanced organoid models for targeting Kras-driven lung adenocarcinoma in drug discovery and combination therapy. J Exp Clin Cancer Res, 2025, 44(1): 128. |
| 64. | Luan Q, Pulido I, Isagirre A, et al. Deciphering fibroblast-induced drug resistance in non-small cell lung carcinoma through patient-derived organoids in agarose microwells. Lab Chip, 2024, 24(7): 2025-2038. |
| 65. | Wang X, Wen S, Du X, et al. SAA suppresses α-PD-1 induced anti-tumor immunity by driving TH2 polarization in lung adenocarcinoma. Cell Death Dis, 2023, 14(11): 718. |
| 66. | Borczuk AC, Salvatore SP, Seshan SV, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol, 2020, 33(11): 2156-2168. |
| 67. | Zhou J, Li C, Sachs N, et al. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc Natl Acad Sci U S A, 2018, 115(26): 6822-6827. |
| 68. | Elbadawi M, Efferth T. Organoids of human airways to study infectivity and cytopathy of SARS-CoV-2. Lancet Respir Med, 2020, 8(7): e55-e56. |
| 69. | Pei R, Feng J, Zhang Y, et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell, 2021, 12(9): 717-733. |
| 70. | Leibel SL, McVicar RN, Murad R, et al. A therapy for suppressing canonical and noncanonical SARS-CoV-2 viral entry and an intrinsic intrapulmonary inflammatory response. Proc Natl Acad Sci U S A, 2024, 121(30): e2408109121. |
| 71. | Duarte RRR, Copertino DC Jr, I?iguez LP, et al. Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Mol Med, 2021, 27(1): 105. |
| 72. | Han Y, Duan X, Yang L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589(7841): 270-275. |
| 73. | Tiwari SK, Wang S, Smith D, et al. Revealing tissue-specific SARS-CoV-2 infection and host responses using human stem cell-derived lung and cerebral organoids. Stem Cell Reports, 2021, 16(3): 437-445. |
| 74. | Ma Y, Zhou Y, Jiang D, et al. Integration of human organoids single-cell transcriptomic profiles and human genetics repurposes critical cell type-specific drug targets for severe COVID-19. Cell Prolif, 2024, 57(3): e13558. |
| 75. | Leon-Icaza SA, Frétaud M, Cornélie S, et al. Curcumin-mediated NRF2 induction limits inflammatory damage in, preclinical models of cystic fibrosis. Biomed Pharmacother, 2025, 186: 117957. |
| 76. | Chen L, Yu T, Zhai Y, et al. Luteolin enhances transepithelial sodium transport in the lung alveolar model: integrating network pharmacology and mechanism study. Int J Mol Sci, 2023, 24(12): 10122. |
| 77. | Li Y, Meng J, Wang X, et al. The modified Fangji Huangqi decoction ameliorates chronic obstructive pulmonary disease (COPD) by down-regulating IL-33 expression to inhibit neutrophil recruitment. J Ethnopharmacol, 2025, 351: 120155. |
| 78. | Zhang K, Xi J, Wang Y, et al. A microfluidic chip-based automated system for whole-course monitoring the drug responses of organoids. Anal Chem, 2024, 96(24): 10092-10101. |
| 79. | Xiao Z, Ding L, Yu Y, et al. Tanreqing injection inhibits stemness and enhances sensitivity of non-small cell lung cancer models to gefitinib through ROS/STAT3 signaling pathway. J Cancer, 2024, 15(13): 4259-4274. |
| 80. | Kim S-Y, Kim S-M, Lim S, et al. Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res, 2021, 27(15): 4397-4409. |
| 81. | Shi R, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res, 2020, 26(5): 1162-1174. |
| 82. | Wang HM, Zhang CY, Peng KC, et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: a real-world study. Cell Rep Med, 2023, 4(2): 100911. |
| 83. | Liu L, Yu L, Li Z, et al. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J Transl Med, 2021, 19(1): 40. |
| 84. | Putker M, Millen R, Overmeer R, et al. Medium-throughput drug- and radiotherapy screening assay using patient-derived organoids. J Vis Exp, 2021, 170: 33999032. |
| 85. | Dzobo K. Taking a full snapshot of cancer biology: deciphering the tumor microenvironment for effective cancer therapy in the oncology clinic. OMICS, 2020, 24(4): 175-179. |
| 86. | Lu T, Cao Y, Zhao P, et al. Organoid: a powerful tool to study lung regeneration and disease. Cell Regen, 2021, 10(1): 21. |
| 87. | Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest, 1974, 30(1): 35-42. |
| 88. | Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, 2013, 123(7): 3025-36. |
| 89. | Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A, 2011, 108(52): E1475-83. |
| 90. | Toth A, Kannan P, Snowball J, et al. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat Commun, 2023, 14(1): 8452. |
| 91. | Lee J, Venapally A, Maekawa R, et al. Human lung organoid model of bronchiolitis obliterans syndrome following hematopoietic cell transplantation. Blood, 2024, 144: 4768-4768. |
| 92. | Gao X, Tang M, Li J, et al. Activation of Nrf2 pathway by 4-Octyl itaconate enhances donor lung function in cold preservation settings. Respir Res, 2025, 26(1): 69. |
| 93. | Dinh PC, Cores J, Hensley MT, et al. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respir Res, 2017, 18(1): 132. |
| 94. | Chen YW, Huang SX, de Carvalho A, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol, 2017, 19(5): 542-549. |
| 95. | Louie SM, Moye AL, Wong IG, et al. Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Rep, 2022, 39(2): 110662. |
| 96. | Hu Y, Sui X, Song F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun, 2021, 12(1): 2581. |
| 97. | Shi R, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res, 2020, 26(5): 1162-1174. |
| 98. | Taurin S, Alzahrani R, Aloraibi S, et al. Patient-derived tumor organoids: a preclinical platform for personalized cancer therapy. Transl Oncol, 2025, 51: 102226. |
| 99. | Yun W, Li Y, Ge Y, et al. Tumor organoids may be more suitable for clinical personalized chemotherapeutic drug screening in lung adenocarcinoma. Front Cell Dev Biol, 2025, 13: 1639922. |
| 100. | Jiang Y, Lu L, Du C, et al. Human airway organoids as 3D in vitro models for a toxicity assessment of emerging inhaled pollutants: tire wear particles. Front Bioeng Biotechnol, 2023, 10: 1105710. |
| 101. | Wang Y, Wu Q, Ren B, et al. Subacute pulmonary toxicity of glutaraldehyde aerosols in a human in vitro airway tissue model. Int J Mol Sci, 2022, 23(20): 12118. |
| 102. | Wang H, Han Z, Yang Y, et al. Modeling of lung organoid-based fibrosis for testing the sensitivity of anti-fibrotic drugs. Stem Cell Res Ther, 2025, 16(1): 132. |
| 103. | Liu H, Triffitt J T, Xia Z, et al. Artificial intelligence-enabled studies on organoid and organoid extracellular vesicles. Biomater Transl, 2024, 5(2): 93-94. |
| 104. | Maramraju S, Kowalczewski A, Kaza A, et al. AI-organoid integrated systems for biomedical studies and applications. Bioeng Transl Med, 2024, 9(2): e10641. |
| 105. | McCauley KB, Hawkins F, Serra M, et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell, 2017, 20(6): 844-857. |
| 106. | Avery K, Chen X. Integration of bioprinting advances and biomechanical strategies for in vitro lung modelling. Biofabrication, 2024, 17(1): 39536463. |
| 107. | Lee H, Yang S, Lee KJ, et al. Standardization and quality assessment for human intestinal organoids. Front Cell Dev Biol, 2024, 12: 1383893. |
| 108. | Yang R, Qi Y, Zhang X, et al. Living biobank: standardization of organoid construction and challenges. Chin Med J (Engl), 2024, 137(24): 3050-3060. |
| 109. | 中國抗癌協會腫瘤多學科診療專業委員會, 中國抗癌協會腫瘤內分泌專業委員會, 趙冰, 等. 腫瘤類器官診治平臺的質量控制標準中國專家共識 (2022年版). 中國癌癥雜志, 2022, 32(7): 657-668.Chinese Anti-Cancer Association Committee of Multidisciplinary Diagnosis and Treatment of Tumors, Chinese Anti-Cancer Association Committee of Tumor Endocrinology, Zhao B, et al. Chinese experts consensus on quality control standards for tumor organoids diagnosis and treatment platform (2022 version). Chin Cancer J, 2022, 32(7): 657-668. |
| 110. | 王樹濱, 高靜, 朱宇, 等. 類器官藥物敏感性檢測指導腫瘤精準治療臨床應用專家共識 (2022年版). 中國癌癥防治雜志, 2022, 14(3): 234-239.Wang SB, Gao J, Zhu Y, et al. Expert consensus of clinical application about tumor precision therapy guided by organoid-based drug sensitivity testing (2022 edition). Chin J Cancer Prev Treat, 2022, 14(3): 234-239. |
| 111. | de Jongh D, Massey EK, VANGUARD consortium, et al. Organoids: a systematic review of ethical issues. Stem Cell Res Ther, 2022, 13(1): 337. |
- 1. GBD 2019 Respiratory Tract Cancers Collaborators. Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Respir Med, 2021, 9(9): 1030-1049.
- 2. Liu X, Yang Q, Pan L, et al. Burden of respiratory tract cancers in China and its provinces, 1990-2021: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Reg Health West Pac, 2025, 55: 101485.
- 3. Barkauskas CE, Chung MI, Fioret B, et al. Lung organoids: current uses and future promise. Development, 2017, 144(6): 986-997.
- 4. Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses. Trends Mol Med, 2021, 27(12): 1159-1174.
- 5. Sen C, Freund D, Gomperts BN. Three-dimensional models of the lung: past, present and future: a mini review. Biochem Soc Trans, 2022, 50(2): 1045-1056.
- 6. Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol, 2020, 15: 211-234.
- 7. Ekanger CT, Zhou F, Bohan D, et al. Human organotypic airway and lung organoid cells of bronchiolar and alveolar differentiation are permissive to infection by influenza and SARS-CoV-2 respiratory virus. Front Cell Infect Microbiol, 2022, 12: 841447.
- 8. Alysandratos KD, Garcia-de-Alba C, Yao C, et al. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight, 2023, 8(1): e158937.
- 9. Hoareau L, Engelsen AST, Aanerud M, et al. Induction of alveolar and bronchiolar phenotypes in human lung organoids. Physiol Rep, 2021, 9(11): e14857.
- 10. Miller AJ, Hill DR, Nagy MS, et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Reports, 2018, 10(1): 101-119.
- 11. Joo H, Min S, Cho SW. Advanced lung organoids for respiratory system and pulmonary disease modeling. J Tissue Eng, 2024, 15: 20417314241232502.
- 12. Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165.
- 13. Dye BR, Hill DR, Ferguson MA, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife, 2015, 4: e05098.
- 14. Porotto M, Ferren M, Chen YW, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio, 2019, 10(3): e00723-19.
- 15. 15HESPEROS. Human-on-a-chip data enables clinical trial (NCT04658472) highlighting potential for in vitro approach in lieu of animal studies for rare neuromuscular disorders. Accessed on 2025-06-07.
- 16. Matkovic Leko I, Schneider RT, Thimraj TA, et al. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc, 2023, 18(7): 2283-2312.
- 17. Miao Y, Pek NM, Tan C, et al. Co-development of mesoderm and endoderm enables organotypic vascularization in lung and gut organoids. Cell, 2025, 188(16): 4295-4313. e27.
- 18. Chen YW, Huang SX, de Carvalho ALRT, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol, 2017, 19(5): 542-549.
- 19. Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature, 2022, 604(7904): 111-119.
- 20. Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc, 2019, 14(2): 518-540.
- 21. Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife, 2016, 5: e19732.
- 22. Dye BR, Youngblood RL, Oakes RS, et al. Human lung organoids develop into adult airway-like structures directed by physico-chemical biomaterial properties. Biomaterials, 2020, 234: 119757.
- 23. Clevers H. Modeling development and disease with organoids. Cell, 2016, 165(7): 1586-1597.
- 24. Beumer J, Geurts MH, Lamers MM, et al. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun, 2021, 12(1): 5498.
- 25. Lamers MM, van der Vaart J, Knoops K, et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type Ⅱ-like cells. EMBO J, 2021, 40(5): e105912.
- 26. Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol, 2018, 71-72: 112-127.
- 27. Lee J, Kim JH, Hong SH, et al. Organoid model in idiopathic pulmonary fibrosis. Int J Stem Cells, 2021, 14(1): 1-8.
- 28. Wisman M, Nizamoglu M, Noordhoek JA, et al. Dysregulated cross-talk between alveolar epithelial cells and stromal cells in idiopathic pulmonary fibrosis reduces epithelial regenerative capacity. Front Med (Lausanne), 2023, 10: 1182368.
- 29. Yao Y, Ritzmann F, Miethe S, et al. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. Mol Med, 2024, 30(1): 227.
- 30. Choi HK, Bang G, Shin JH, et al. Regenerative capacity of alveolar type 2 cells Is proportionally reduced following disease progression in idiopathic pulmonary fibrosis-derived organoid cultures. Tuberc Respir Dis (Seoul), 2025, 88(1): 130-137.
- 31. Sui J, Boatz JC, Shi J, et al. Loss of ANT1 increases fibrosis and epithelial cell senescence in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol, 2023, 69(5): 556-569.
- 32. Gokey JJ, Snowball J, Green J, et al. Pretreatment of aged mice with retinoic acid supports alveolar regeneration via upregulation of reciprocal PDGFA signalling. Thorax, 2021, 76(5): 456-467.
- 33. Ptasinski V, Monkley SJ, ?st K, et al. Modeling fibrotic alveolar transitional cells with pluripotent stem cell-derived alveolar organoids. Life Sci Alliance, 2023, 6(8): e202201853.
- 34. Strikoudis A, Cie?lak A, Loffredo L, et al. Modeling of fibrotic lung disease using 3D Organoids derived from human pluripotent stem cells. Cell Rep, 2019, 27(12): 3709-3723. e5.
- 35. Shaikh SB, Bhandary YP. CRISPR/Cas9 genome editing tool: a promising tool for therapeutic applications on respiratory diseases. Curr Gene Ther, 2020, 20(5): 333-346.
- 36. McKelvey MC, Weldon S, McAuley DF, et al. Targeting proteases in cystic fibrosis lung disease. paradigms, progress, and potential. Am J Respir Crit Care Med, 2020, 201(2): 141-147.
- 37. van Mourik P, Beekman JM, van der Ent CK. Intestinal organoids to model cystic fibrosis. Eur Respir J, 2019, 54(1): 1802379.
- 38. Liu Z, Anderson JD, Deng L, et al. Human nasal epithelial organoids for therapeutic development in cystic fibrosis. Genes (Basel), 2020, 11(6): 603.
- 39. Demchenko A, Kondrateva E, Tabakov V, et al. Airway and lung organoids from human-induced pluripotent stem cells can be used to assess CFTR conductance. Int J Mol Sci, 2023, 24(7): 6293.
- 40. Demchenko A, Belova L, Balyasin M, et al. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research. Front Cell Dev Biol, 2024, 12: 1336392.
- 41. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling. EMBO J, 2019, 38(4): e100300.
- 42. Nicosia L, Pranke I, Latorre RV, et al. Adenine base editing with engineered virus-like particles rescues the CFTR mutation G542X in patient-derived intestinal organoids. iScience, 2025, 28(3): 111979.
- 43. Bulcaen M, Kortleven P, Liu RB, et al. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell Rep Med, 2024, 5(5): 101544.
- 44. Mejías JC, Nelson MR, Liseth O, et al. A 96-well format microvascularized human lung-on-a-chip platform for microphysiological modeling of fibrotic diseases. Lab Chip, 2020, 20(19): 3601-3611.
- 45. Plebani R, Potla R, Soong M, et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros, 2022, 21(4): 606-615.
- 46. Huo Y, He S, Chen Y. Lung organoids in COPD: recent advances and future prospects. Respir Res, 2025, 26(1): 76.
- 47. Lam HC, Choi AM, Ryter SW. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface. J Vis Exp, 2011(48): 2513.
- 48. Basil MC, Cardenas-Diaz FL, Kathiriya JJ, et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature, 2022, 604(7904): 120-126.
- 49. Wu X, Bos IST, Conlon TM, et al. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Sci Adv, 2022, 8(12): eabj9949.
- 50. Zhou F, Onizawa S, Nagai A, et al. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury. Respir Res, 2011, 12(1): 78.
- 51. Hu Y, Hu Q, Ansari M, et al. Airway-derived emphysema-specific alveolar typeⅡ cells exhibit impaired regenerative potential in COPD. Eur Respir J, 2024, 64(6): 2302071.
- 52. Wei YY, Zhang DW, Ye JJ, et al. Interleukin-6 neutralizing antibody attenuates the hypersecretion of airway mucus via inducing the nuclear translocation of Nrf2 in chronic obstructive pulmonary disease. Biomed Pharmacother, 2022, 152: 113244.
- 53. Carpenter J, Wang Y, Gupta R, et al. Assembly and organization of the N-terminal region of mucin MUC5AC: Indications for structural and functional distinction from MUC5B. Proc Natl Acad Sci U S A, 2021, 118(39): e2104490118.
- 54. Chan LLY, Anderson DE, Cheng HS, et al. The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun, 2022, 13(1): 7635.
- 55. Cunniff B, Druso JE, van der Velden JL. Lung organoids: advances in generation and 3D-visualization. Histochem Cell Biol, 2021, 155(2): 301-308.
- 56. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011, 141(5): 1762-1772.
- 57. Kim M, Mun H, Sung CO, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun, 2019, 10(1): 3991.
- 58. Miura A, Yamada D, Nakamura M, et al. Oncogenic potential of human pluripotent stem cell-derived lung organoids with HER2 overexpression. Int J Cancer, 2021, 149(8): 1593-1604.
- 59. Liu Y, Chudgar N, Mastrogiacomo B, et al. A germline SNP in BRMS1 predisposes patients with lung adenocarcinoma to metastasis and can be ameliorated by targeting c-fos. Sci Transl Med, 2022, 14(665): eabo1050.
- 60. Choi YM, Lee H, Ann M, et al. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication, 2023, 15(3): 034104.
- 61. Li Z, Qian Y, Li W, et al. Human lung adenocarcinoma-derived organoid models for drug screening. iScience, 2020, 23(8): 101411.
- 62. Wang HM, Zhang CY, Peng KC, et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med, 2023, 4(2): 100911.
- 63. Ta? ?, Jacobs R, Albrecht J, et al. Advanced organoid models for targeting Kras-driven lung adenocarcinoma in drug discovery and combination therapy. J Exp Clin Cancer Res, 2025, 44(1): 128.
- 64. Luan Q, Pulido I, Isagirre A, et al. Deciphering fibroblast-induced drug resistance in non-small cell lung carcinoma through patient-derived organoids in agarose microwells. Lab Chip, 2024, 24(7): 2025-2038.
- 65. Wang X, Wen S, Du X, et al. SAA suppresses α-PD-1 induced anti-tumor immunity by driving TH2 polarization in lung adenocarcinoma. Cell Death Dis, 2023, 14(11): 718.
- 66. Borczuk AC, Salvatore SP, Seshan SV, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol, 2020, 33(11): 2156-2168.
- 67. Zhou J, Li C, Sachs N, et al. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc Natl Acad Sci U S A, 2018, 115(26): 6822-6827.
- 68. Elbadawi M, Efferth T. Organoids of human airways to study infectivity and cytopathy of SARS-CoV-2. Lancet Respir Med, 2020, 8(7): e55-e56.
- 69. Pei R, Feng J, Zhang Y, et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell, 2021, 12(9): 717-733.
- 70. Leibel SL, McVicar RN, Murad R, et al. A therapy for suppressing canonical and noncanonical SARS-CoV-2 viral entry and an intrinsic intrapulmonary inflammatory response. Proc Natl Acad Sci U S A, 2024, 121(30): e2408109121.
- 71. Duarte RRR, Copertino DC Jr, I?iguez LP, et al. Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Mol Med, 2021, 27(1): 105.
- 72. Han Y, Duan X, Yang L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589(7841): 270-275.
- 73. Tiwari SK, Wang S, Smith D, et al. Revealing tissue-specific SARS-CoV-2 infection and host responses using human stem cell-derived lung and cerebral organoids. Stem Cell Reports, 2021, 16(3): 437-445.
- 74. Ma Y, Zhou Y, Jiang D, et al. Integration of human organoids single-cell transcriptomic profiles and human genetics repurposes critical cell type-specific drug targets for severe COVID-19. Cell Prolif, 2024, 57(3): e13558.
- 75. Leon-Icaza SA, Frétaud M, Cornélie S, et al. Curcumin-mediated NRF2 induction limits inflammatory damage in, preclinical models of cystic fibrosis. Biomed Pharmacother, 2025, 186: 117957.
- 76. Chen L, Yu T, Zhai Y, et al. Luteolin enhances transepithelial sodium transport in the lung alveolar model: integrating network pharmacology and mechanism study. Int J Mol Sci, 2023, 24(12): 10122.
- 77. Li Y, Meng J, Wang X, et al. The modified Fangji Huangqi decoction ameliorates chronic obstructive pulmonary disease (COPD) by down-regulating IL-33 expression to inhibit neutrophil recruitment. J Ethnopharmacol, 2025, 351: 120155.
- 78. Zhang K, Xi J, Wang Y, et al. A microfluidic chip-based automated system for whole-course monitoring the drug responses of organoids. Anal Chem, 2024, 96(24): 10092-10101.
- 79. Xiao Z, Ding L, Yu Y, et al. Tanreqing injection inhibits stemness and enhances sensitivity of non-small cell lung cancer models to gefitinib through ROS/STAT3 signaling pathway. J Cancer, 2024, 15(13): 4259-4274.
- 80. Kim S-Y, Kim S-M, Lim S, et al. Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res, 2021, 27(15): 4397-4409.
- 81. Shi R, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res, 2020, 26(5): 1162-1174.
- 82. Wang HM, Zhang CY, Peng KC, et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: a real-world study. Cell Rep Med, 2023, 4(2): 100911.
- 83. Liu L, Yu L, Li Z, et al. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J Transl Med, 2021, 19(1): 40.
- 84. Putker M, Millen R, Overmeer R, et al. Medium-throughput drug- and radiotherapy screening assay using patient-derived organoids. J Vis Exp, 2021, 170: 33999032.
- 85. Dzobo K. Taking a full snapshot of cancer biology: deciphering the tumor microenvironment for effective cancer therapy in the oncology clinic. OMICS, 2020, 24(4): 175-179.
- 86. Lu T, Cao Y, Zhao P, et al. Organoid: a powerful tool to study lung regeneration and disease. Cell Regen, 2021, 10(1): 21.
- 87. Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest, 1974, 30(1): 35-42.
- 88. Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, 2013, 123(7): 3025-36.
- 89. Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A, 2011, 108(52): E1475-83.
- 90. Toth A, Kannan P, Snowball J, et al. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat Commun, 2023, 14(1): 8452.
- 91. Lee J, Venapally A, Maekawa R, et al. Human lung organoid model of bronchiolitis obliterans syndrome following hematopoietic cell transplantation. Blood, 2024, 144: 4768-4768.
- 92. Gao X, Tang M, Li J, et al. Activation of Nrf2 pathway by 4-Octyl itaconate enhances donor lung function in cold preservation settings. Respir Res, 2025, 26(1): 69.
- 93. Dinh PC, Cores J, Hensley MT, et al. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respir Res, 2017, 18(1): 132.
- 94. Chen YW, Huang SX, de Carvalho A, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol, 2017, 19(5): 542-549.
- 95. Louie SM, Moye AL, Wong IG, et al. Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Rep, 2022, 39(2): 110662.
- 96. Hu Y, Sui X, Song F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun, 2021, 12(1): 2581.
- 97. Shi R, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res, 2020, 26(5): 1162-1174.
- 98. Taurin S, Alzahrani R, Aloraibi S, et al. Patient-derived tumor organoids: a preclinical platform for personalized cancer therapy. Transl Oncol, 2025, 51: 102226.
- 99. Yun W, Li Y, Ge Y, et al. Tumor organoids may be more suitable for clinical personalized chemotherapeutic drug screening in lung adenocarcinoma. Front Cell Dev Biol, 2025, 13: 1639922.
- 100. Jiang Y, Lu L, Du C, et al. Human airway organoids as 3D in vitro models for a toxicity assessment of emerging inhaled pollutants: tire wear particles. Front Bioeng Biotechnol, 2023, 10: 1105710.
- 101. Wang Y, Wu Q, Ren B, et al. Subacute pulmonary toxicity of glutaraldehyde aerosols in a human in vitro airway tissue model. Int J Mol Sci, 2022, 23(20): 12118.
- 102. Wang H, Han Z, Yang Y, et al. Modeling of lung organoid-based fibrosis for testing the sensitivity of anti-fibrotic drugs. Stem Cell Res Ther, 2025, 16(1): 132.
- 103. Liu H, Triffitt J T, Xia Z, et al. Artificial intelligence-enabled studies on organoid and organoid extracellular vesicles. Biomater Transl, 2024, 5(2): 93-94.
- 104. Maramraju S, Kowalczewski A, Kaza A, et al. AI-organoid integrated systems for biomedical studies and applications. Bioeng Transl Med, 2024, 9(2): e10641.
- 105. McCauley KB, Hawkins F, Serra M, et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell, 2017, 20(6): 844-857.
- 106. Avery K, Chen X. Integration of bioprinting advances and biomechanical strategies for in vitro lung modelling. Biofabrication, 2024, 17(1): 39536463.
- 107. Lee H, Yang S, Lee KJ, et al. Standardization and quality assessment for human intestinal organoids. Front Cell Dev Biol, 2024, 12: 1383893.
- 108. Yang R, Qi Y, Zhang X, et al. Living biobank: standardization of organoid construction and challenges. Chin Med J (Engl), 2024, 137(24): 3050-3060.
- 109. 中國抗癌協會腫瘤多學科診療專業委員會, 中國抗癌協會腫瘤內分泌專業委員會, 趙冰, 等. 腫瘤類器官診治平臺的質量控制標準中國專家共識 (2022年版). 中國癌癥雜志, 2022, 32(7): 657-668.Chinese Anti-Cancer Association Committee of Multidisciplinary Diagnosis and Treatment of Tumors, Chinese Anti-Cancer Association Committee of Tumor Endocrinology, Zhao B, et al. Chinese experts consensus on quality control standards for tumor organoids diagnosis and treatment platform (2022 version). Chin Cancer J, 2022, 32(7): 657-668.
- 110. 王樹濱, 高靜, 朱宇, 等. 類器官藥物敏感性檢測指導腫瘤精準治療臨床應用專家共識 (2022年版). 中國癌癥防治雜志, 2022, 14(3): 234-239.Wang SB, Gao J, Zhu Y, et al. Expert consensus of clinical application about tumor precision therapy guided by organoid-based drug sensitivity testing (2022 edition). Chin J Cancer Prev Treat, 2022, 14(3): 234-239.
- 111. de Jongh D, Massey EK, VANGUARD consortium, et al. Organoids: a systematic review of ethical issues. Stem Cell Res Ther, 2022, 13(1): 337.

