1. |
Ozawa T, Mickle DA, Weisel RD, et al. Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg, 2002, 124 (6):1157-1164.
|
2. |
Miyagi Y, Zeng F, Huang XP, et al. Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold. Biomaterials,2010, 31 (30):7684-7694.
|
3. |
Naderi H, Matin MM, Bahrami AR. Review paper:critical issues in tissue engineering:biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl, 2011, 26 (4):383-417.
|
4. |
Simpson D, Liu H, Fan TH, et al. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells, 2007, 25 (9):2350-2357.
|
5. |
康凱, 曲輝, 湯繼權, 等. 大鼠室壁瘤左心室重建模型的建立. 中國胸心血管外科臨床雜志, 2012, 19 (3):293-297.
|
6. |
Radisic M, Malda J, Epping E, et al. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue.Biotechnol Bioeng, 2006, 93 (2):332-343.
|
7. |
Miyagi Y, Chiu LL, Cimini M, et al. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials,2011, 32 (5):1280-1290.
|
8. |
Wang H, Zhang X, Li Y, et al. Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant, 2010, 29 (8):881-887.
|
9. |
Sun Q, Silva EA, Wang A, et al. Sustained release of multiple growth factors from injectable polymeric system as a novel therapeuticapproach towards angiogenesis. Pharm Res, 2010, 27 (2):264-271.
|
10. |
Lee KY, Peters MC, Anderson KW, et al. Controlled growth factorrelease from synthetic extracellular matrices. Nature, 2000, 408 (6815):998-1000.
|
11. |
Chiu LL, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 2010, 31 (2):226-241.
|
12. |
Zheng W, Seftor EA, Meininger CJ, et al. Mechanisms of coronary angiogenesis in response to stretch:role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol, 2001, 280 (2):H909-H917.
|
13. |
Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion afterinfarction. Proc Natl Acad Sci U S A, 2003, 100 (21):12313-12318.
|
14. |
Asahara T, Bauters C, Zheng LP, et al. Synergistic effect of vascularendothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation, 1995, 92 (9 Suppl):Ⅱ 365- Ⅱ 371.
|
15. |
Onimaru M, Yonemitsu Y, Tanii M, et al. Fibroblast growth factor-2gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res, 2002, 91 (10):923-930.
|
16. |
Lee JS, Kim JM, Kim KL, et al. Combined administration of naked DNA vectors encoding VEGF and bFGF enhances tissue perfusion and arteriogenesis in ischemic hindlimb. Biochem Biophys Res Commun,2007, 360 (4):752-758.
|
17. |
Spanholtz TA, Theodorou P, Holzbach T, et al. Vascular endothelialgrowth factor (VEGF165) plus basic fibroblast growth factor (bFGF) producing cells induce a mature and stable vascular network—afuture therapy for ischemically challenged tissue. J Surg Res, 2011, 171 (1):329-338.
|
18. |
Dvir T, Kedem A, Ruvinov E, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A, 2009, 106 (35):14990-14995.
|
19. |
Zhuo Y, Li SH, Chen MS, et al. Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells:combined Consequences for cell therapy in older recipients. J Thorac Cardiovasc Surg, 2010, 139 (5):1286-1294.
|