- Department of Orthopedics, Renhe Hospital Affiliated to China Three Gorges University, the Institute of Sports Medicine of China Three Gorges University, Yichang Clinical Research Center for Sports Injuries and Rehabilitation, Yichang Hubei, 443001, P. R. China;
Copyright ? the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
| 1. | Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med, 2012, 31(4): 589-604. |
| 2. | Colvin AC, Egorova N, Harrison AK, et al. National trends in rotator cuff repair. J Bone Joint Surg (Am), 2012, 94(3): 227-233. |
| 3. | Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep, 2015, 17(1): 476. doi: 10.1007/s11926-014-0476-x. |
| 4. | Akhtar A, Richards J, Monga P. The biomechanics of the rotator cuff in health and disease—A narrative review. J Clin Orthop Trauma, 2021, 18: 150-156. |
| 5. | Galanopoulos I, Ilias A, Karliaftis K, et al. The impact of re-tear on the clinical outcome after rotator cuff repair using open or arthroscopic techniques-a systematic review. Open Orthop J, 2017, 11: 95-107. |
| 6. | Karjalainen TV, Jain NB, Heikkinen J, et al. Surgery for rotator cuff tears. Cochrane Database Syst Rev, 2019, 12(12): CD013502. doi: 10.1002/14651858.CD013502. |
| 7. | Randelli P, Bak K, Milano G. State of the art in rotator cuff repair. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2): 341-343. |
| 8. | Derwin KA, Badylak SF, Steinmann SP, et al. Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg, 2010, 19(3): 467-476. |
| 9. | Longo UG, Carnevale A, Piergentili I, et al. Retear rates after rotator cuff surgery: a systematic review and meta-analysis. BMC Musculoskelet Disord, 2021, 22(1): 749. doi: 10.1186/s12891-021-04634-6. |
| 10. | 白帥帥, 強輝. 分子生物學方法促進肩袖腱-骨愈合機制研究進展. 臨床醫學進展, 2023, 13(6): 10421-10428. |
| 11. | Franceschi F, Ruzzini L, Longo UG, et al. Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med, 2007, 35(8): 1254-1260. |
| 12. | Klintberg IH, Gunnarsson AC, Svantesson U, et al. Early loading in physiotherapy treatment after full-thickness rotator cuff repair: a prospective randomized pilot-study with a two-year follow-up. Clin Rehabil, 2009, 23(7): 622-638. |
| 13. | Zhao S, Su W, Shah V, et al. Biomaterials based strategies for rotator cuff repair. Colloids Surf B Biointerfaces, 2017, 157: 407-416. |
| 14. | Romeo A, Easley J, Regan D, et al. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold: a biomechanical and histologic analysis in sheep. J Shoulder Elbow Surg, 2022, 31(2): 402-412. |
| 15. | Lei T, Zhang T, Ju W, et al. Biomimetic strategies for tendon/ligament-to-bone interface regeneration. Bioact Mater, 2021, 6(8): 2491-2510. |
| 16. | Deprés-Tremblay G, Chevrier A, Snow M, et al. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elbow Surg, 2016, 25(12): 2078-2085. |
| 17. | Wang L, Zhu T, Kang Y, et al. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact Mater, 2022, 16: 149-161. |
| 18. | Kataoka T, Kokubu T, Muto T, et al. Rotator cuff tear healing process with graft augmentation of fascia lata in a rabbit model. J Orthop Surg Res, 2018, 13(1): 200. doi: 10.1186/s13018-018-0900-4. |
| 19. | Bianchi E, Ruggeri M, Rossi S, et al. Innovative strategies in tendon tissue engineering. Pharmaceutics, 2021, 13(1): 89. doi: 10.3390/pharmaceutics13010089. |
| 20. | 劉萍, 朱威宏, 劉騫. 動物模型在肩袖損傷研究中的應用. 中南大學學報(醫學版), 2021, 46(4): 426-431. |
| 21. | Edelstein L, Thomas SJ, Soslowsky LJ. Rotator cuff tears: what have we learned from animal models? J Musculoskelet Neuronal Interact, 2011, 11(2): 150-162. |
| 22. | Komi PV. Relevance of in vivo force measurements to human biomechanics. J Biomech, 1990, 23 Suppl 1, 23-34. doi: 10.1016/0021-9290(90)90038-5. |
| 23. | Lomas AJ, Ryan CN, Sorushanova A, et al. The past, present and future in scaffold-based tendon treatments. Adv Drug Deliv Rev, 2015, 84: 257-277. |
| 24. | Li D, Wang G, Li J, et al. Biomaterials for tissue-engineered treatment of tendinopathy in animal models: A systematic review. Tissue Eng Part B Rev, 2023, 29(4): 387-413. |
| 25. | Chevrier A, Hurtig MB, Lavertu M. Chitosan-platelet-rich plasma implants improve rotator cuff repair in a large animal model: Pivotal study. Pharmaceutics, 2021, 13(11): 1955. doi: 10.3390/pharmaceutics13111955. |
| 26. | 朱以明, 姜春巖, 王滿宜. 肩關節相關生物力學介紹. 中華創傷骨科雜志, 2005, 7(9): 869-872. |
| 27. | Millar NL, Silbernagel KG, Thorborg K, et al. Tendinopathy. Nat Rev Dis Primers, 2021, 7(1): 1. doi: 10.1038/s41572-020-00234-1. |
| 28. | Lo S, Fauzi MB. Current update of collagen nanomaterials-fabrication, characterisation and its applications: A review. Pharmaceutics, 2021, 13(3): 316. doi: 10.3390/pharmaceutics13030316. |
| 29. | Liu A, Wang Q, Zhao Z, et al. Nitric oxide nanomotor driving exosomes-loaded microneedles for Achilles tendinopathy healing. ACS Nano, 2021, 15(8): 13339-13350. |
| 30. | Yang J, Kang Y, Zhao W, et al. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater, 2021, 10: 474-491. |
| 31. | Kim SY, Chae SW, Lee J. Effect of Poloxamer 407 as a carrier vehicle on rotator cuff healing in a rat model. J Orthop Surg Res, 2014, 9(1): 12. doi: 10.1186/1749-799X-9-12. |
| 32. | Kim DH, Min SG, Yoon JP, et al. Mechanical augmentation with absorbable alginate sheet enhances healing of the rotator cuff. Orthopedics, 2019, 42(1): e104-e110. |
| 33. | Willbold E, Wellmann M, Welke B, et al. Possibilities and limitations of electrospun chitosan-coated polycaprolactone grafts for rotator cuff tear repair. J Tissue Eng Regen Med, 2020, 14(1): 186-197. |
| 34. | Tang X, Shemshaki NS, Vernekar VN, et al. The treatment of muscle atrophy after rotator cuff tears using electroconductive nanofibrous matrices. Regen Eng Transl Med, 2021, 7(1): 1-9. |
| 35. | Zhang X, Wu Y, Han K, et al. 3-Dimensional bioprinting of a tendon stem cell-derived exosomes loaded scaffold to bridge the unrepairable massive rotator cuff tear. Am J Sports Med, 2024, 52(9): 2358-2371. |
| 36. | Zhao S, Xie X, Pan G, et al. Healing improvement after rotator cuff repair using gelatin-grafted poly (L-lactide) electrospun fibrous membranes. J Surg Res, 2015, 193(1): 33-42. |
| 37. | Lipner J, Shen H, Cavinatto L, et al. In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng Part A, 2015, 21(21-22): 2766-2774. |
| 38. | Tarafder S, Brito JA, Minhas S, et al. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication, 2019, 12(1): 015008. doi: 10.1088/1758-5090/ab48ca. |
| 39. | Su W, Wang Z, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane. Int J Nanomedicine, 2019, 14: 1835-1847. |
| 40. | Rocha CV, Gon?alves V, da Silva MC, et al. PLGA-based composites for various biomedical applications. Int J Mol Sci, 2022, 23(4): 2034. doi: 10.3390/ijms23042034. |
| 41. | Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly (lactide-co-glycolide) fibrous membranes. Int J Nanomedicine, 2014, 9: 2373-2385. |
| 42. | Taylor BL, Kim DH, Huegel J, et al. Localized delivery of ibuprofen via a bilayer delivery system (BiLDS) for supraspinatus tendon healing in a rat model. J Orthop Res, 2020, 38(11): 2339-2349. |
| 43. | Araque-Monrós MC, García-Cruz DM, Escobar-Ivirico JL, et al. Regenerative and resorbable PLA/HA hybrid construct for tendon/ligament tissue engineering. Ann Biomed Eng, 2020, 48(2): 757-767. |
| 44. | Zhang Q, Yang Y, Suo D, et al. A biomimetic adhesive and robust janus patch with anti-oxidative, anti-inflammatory, and anti-bacterial activities for tendon repair. ACS Nano, 2023, 17(17): 16798-16816. |
| 45. | Sun Y, Han F, Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear. J Mater Chem B, 2016, 4(45): 7259-7269. |
| 46. | Dethe MR, A P, Ahmed H, et al. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release, 2022, 343: 217-236. |
| 47. | Rocha J, Araújo JC, Fangueiro R, et al. Wetspun polymeric fibrous systems as potential scaffolds for tendon and ligament repair, healing and regeneration. Pharmaceutics, 2022, 14(11): 2526. doi: 10.3390/pharmaceutics14112526. |
| 48. | Reifenrath J, Wellmann M, Kempfert M, et al. TGF-β3 loaded electrospun polycaprolacton fibre scaffolds for rotator cuff tear repair: An in vivo study in rats. Int J Mol Sci, 2020, 21(3): 1046. doi: 10.3390/ijms21031046. |
| 49. | Huegel J, Kim DH, Cirone JM, et al. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion. J Orthop Res, 2017, 35(6): 1250-1257. |
| 50. | Min HK, Kwon OS, Oh SH, et al. Platelet-derived growth factor-BB-immobilized asymmetrically porous membrane for enhanced rotator cuff tendon healing. Tissue Eng Regen Med, 2016, 13(5): 568-578. |
| 51. | Wang C, Zhang X, Wang DM, et al. Optimized design of an enthesis-mimicking suture anchor-tendon hybrid graft for mechanically robust bone-tendon repair. Acta Biomater, 2024, 176: 277-292. |
| 52. | Benayahu D, Sharabi M, Pomeraniec L, et al. Unique collagen fibers for biomedical applications. Mar Drugs, 2018, 16(4): 102. doi: 10.3390/md16040102. |
| 53. | Nuss CA, Huegel J, Boorman-Padgett JF, et al. Poly-N-acetyl glucosamine (sNAG) enhances early rotator cuff tendon healing in a rat model. Ann Biomed Eng, 2017, 45(12): 2826-2836. |
| 54. | Learn GD, McClellan PE, Knapik DM, et al. Woven collagen biotextiles enable mechanically functional rotator cuff tendon regeneration during repair of segmental tendon defects in vivo. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 1864-1876. |
| 55. | Smith MJ, Bozynski CC, Kuroki K, et al. Comparison of biologic scaffolds for augmentation of partial rotator cuff tears in a canine model. J Shoulder Elbow Surg, 2020, 29(8): 1573-1583. |
| 56. | Peterson DR, Ohashi KL, Aberman HM, et al. Evaluation of a collagen-coated, resorbable fiber scaffold loaded with a peptide basic fibroblast growth factor mimetic in a sheep model of rotator cuff repair. J Shoulder Elbow Surg, 2015, 24(11): 1764-1773. |
| 57. | Omi R, Gingery A, Steinmann SP, et al. Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells. J Shoulder Elbow Surg, 2016, 25(3): 469-477. |
| 58. | Sevivas N, Teixeira FG, Portugal R, et al. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivo when a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear. Am J Sports Med, 2018, 46(2): 449-459. |
| 59. | Rothrauff BB, Smith CA, Ferrer GA, et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. J Shoulder Elbow Surg, 2019, 28(4): 654-664. |
| 60. | Gelse K, P?schl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev, 2003, 55(12): 1531-1546. |
| 61. | Zhu M, Tay ML, Callon K, et al. Overlay repair with a synthetic collagen scaffold improves the quality of healing in a rat rotator cuff repair model. J Shoulder Elbow Surg, 2019, 28(5): 949-958. |
| 62. | Ficklscherer A, Zhang AZ, Beer T, et al. The effect of autologous Achilles bursal tissue implants in tendon-to-bone healing of rotator cuff tears in rats. J Shoulder Elbow Surg, 2020, 29(9): 1892-1900. |
| 63. | Jabbari F, Babaeipour V, Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int J Biol Macromol, 2023, 240: 124484. doi: 10.1016/j.ijbiomac.2023.124484. |
| 64. | Lin W, Mashiah R, Seror J, et al. Lipid-hyaluronan synergy strongly reduces intrasynovial tissue boundary friction. Acta Biomater, 2019, 83: 314-321. |
| 65. | 黃成龍, 趙松, 程飚, 等. 微骨折技術聯合仿生水凝膠支架促進兔肩袖腱-骨愈合的實驗研究. 中國修復重建外科雜志, 2020, 34(9): 1177-1183. |
| 66. | Cong S, Sun Y, Lin J, et al. A synthetic graft with multilayered co-electrospinning nanoscaffolds for bridging massive rotator cuff tear in a rat model. Am J Sports Med, 2020, 48(8): 1826-1836. |
| 67. | Zhao Y, Peng H, Sun L, et al. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio, 2024, 26: 101032. doi: 10.1016/j.mtbio.2024.101032. |
| 68. | Zhang X, Fang Z, Cho E, et al. Use of a novel, reinforced, low immunogenic, porcine small intestine submucosa patch to repair a supraspinatus tendon defect in a rabbit model. Biomed Res Int, 2019, 2019: 9346567. doi: 10.1155/2019/9346567. |
| 69. | Lin M, Li W, Ni X, et al. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol, 2023, 11: 1250533. doi: 10.3389/fbioe.2023.1250533. |
| 70. | Tokunaga T, Ide J, Arimura H, et al. Local application of gelatin hydrogel sheets impregnated with platelet-derived growth factor BB promotes tendon-to-bone healing after rotator cuff repair in rats. Arthroscopy, 2015, 31(8): 1482-1491. |
| 71. | Bailey JR, Kim C, Alentorn-Geli E, et al. Rotator cuff matrix augmentation and interposition: A systematic review and meta-analysis. Am J Sports Med, 2019, 47(6): 1496-1506. |
| 72. | Sun Y, Jung HW, Kwak JM, et al. Reconstruction of large chronic rotator cuff tear can benefit from the bone-tendon composite autograft to restore the native bone-tendon interface. J Orthop Translat, 2020, 24: 175-182. |
| 73. | Liu Q, Yu Y, Reisdorf RL, et al. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials, 2019, 192: 189-198. |
| 74. | Novakova SS, Mahalingam VD, Florida SE, et al. Tissue-engineered tendon constructs for rotator cuff repair in sheep. J Orthop Res, 2018, 36(1): 289-299. |
| 75. | Chen Y, Xu Y, Li M, et al. Application of autogenous urine-derived stem cell sheet enhances rotator cuff healing in a canine model. Am J Sports Med, 2020, 48(14): 3454-3466. |
| 76. | Varvitsiotis D, Papaspiliopoulos A, Vlachou V, et al. Fascia lata allograft bridging of a rotator cuff tear in a rabbit animal model. Int J Shoulder Surg, 2014, 8(2): 39-46. |
| 77. | Yanke A, Dandu N, Credille K, et al. Indications and technique: Rotator cuff repair augmentation. J Am Acad Orthop Surg, 2023, 31(24): 1205-1210. |
| 78. | Shin MJ, Shim IK, Kim DM, et al. Engineered cell sheets for the effective delivery of adipose-derived stem cells for tendon-to-bone healing. Am J Sports Med, 2020, 48(13): 3347-3358. |
| 79. | Street M, Thambyah A, Dray M, et al. Augmentation with an ovine forestomach matrix scaffold improves histological outcomes of rotator cuff repair in a rat model. J Orthop Surg Res, 2015, 10: 165. doi: 10.1186/s13018-015-0303-8. |
| 80. | Liu GM, Pan J, Zhang Y, et al. Bridging repair of large rotator cuff tears using a multilayer decellularized tendon slices graft in a rabbit model. Arthroscopy, 2018, 34(9): 2569-2578. |
| 81. | Pan J, Liu GM, Ning LJ, et al. Rotator cuff repair using a decellularized tendon slices graft: an in vivo study in a rabbit model. Knee Surg Sports Traumatol Arthrosc, 2015, 23(5): 1524-1535. |
| 82. | Li HS, Zhou M, Huang P, et al. Histologic and biomechanical evaluation of the thoracolumbar fascia graft for massive rotator cuff tears in a rat model. J Shoulder Elbow Surg, 2022, 31(4): 699-710. |
| 83. | Lee KW, Lee JS, Kim YS, et al. Effective healing of chronic rotator cuff injury using recombinant bone morphogenetic protein-2 coated dermal patch in vivo. J Biomed Mater Res B Appl Biomater, 2017, 105(7): 1840-1846. |
| 84. | Kabuto Y, Morihara T, Sukenari T, et al. Stimulation of rotator cuff repair by sustained release of bone morphogenetic protein-7 using a gelatin hydrogel sheet. Tissue Eng Part A, 2015, 21(13-14): 2025-2033. |
| 85. | Kovacevic D, Gulotta LV, Ying L, et al. rhPDGF-BB promotes early healing in a rat rotator cuff repair model. Clin Orthop Relat Res, 2015, 473(5): 1644-1654. |
| 86. | Jiu J, Liu H, Li D, et al. 3D bioprinting approaches for spinal cord injury repair. Biofabrication, 2024, 16(3). doi: 10.1088/1758-5090/ad3a13. |
| 87. | Yamamoto A, Takagishi K, Osawa T, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg, 2010, 19(1): 116-120. |
| 88. | Zhang X, Li K, Wang C, et al. Facile and rapid fabrication of a novel 3D-printable, visible light-crosslinkable and bioactive polythiourethane for large-to-massive rotator cuff tendon repair. Bioact Mater, 2024, 37: 439-458. |
| 89. | Tokunaga T, Karasugi T, Arimura H, et al. Enhancement of rotator cuff tendon-bone healing with fibroblast growth factor 2 impregnated in gelatin hydrogel sheets in a rabbit model. J Shoulder Elbow Surg, 2017, 26(10): 1708-1717. |
| 90. | Sun Y, You Y, Jiang W, et al. 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration. Sci Adv, 2020, 6(37): eaay1422. doi: 10.1126/sciadv.aay1422. |
| 91. | Smietana MJ, Moncada-Larrotiz P, Arruda EM, et al. Tissue-engineered tendon for enthesis regeneration in a rat rotator cuff model. Biores Open Access, 2017, 6(1): 47-57. |
| 92. | Harada Y, Mifune Y, Inui A, et al. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model. J Orthop Res, 2017, 35(2): 289-296. |
| 93. | Du L, Wu J, Han Y, et al. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci Adv, 2024, 10(10): eadk6610. doi: 10.1126/sciadv.adk6610. |
| 94. | Lopiz Y, Arvinius C, García-Fernández C, et al. Repair of rotator cuff injuries using different composites. Rev Esp Cir Ortop Traumatol, 2017, 61(1): 51-62. |
| 95. | Yea JH, Bae TS, Kim BJ, et al. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater, 2020, 114: 104-116. |
- 1. Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med, 2012, 31(4): 589-604.
- 2. Colvin AC, Egorova N, Harrison AK, et al. National trends in rotator cuff repair. J Bone Joint Surg (Am), 2012, 94(3): 227-233.
- 3. Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep, 2015, 17(1): 476. doi: 10.1007/s11926-014-0476-x.
- 4. Akhtar A, Richards J, Monga P. The biomechanics of the rotator cuff in health and disease—A narrative review. J Clin Orthop Trauma, 2021, 18: 150-156.
- 5. Galanopoulos I, Ilias A, Karliaftis K, et al. The impact of re-tear on the clinical outcome after rotator cuff repair using open or arthroscopic techniques-a systematic review. Open Orthop J, 2017, 11: 95-107.
- 6. Karjalainen TV, Jain NB, Heikkinen J, et al. Surgery for rotator cuff tears. Cochrane Database Syst Rev, 2019, 12(12): CD013502. doi: 10.1002/14651858.CD013502.
- 7. Randelli P, Bak K, Milano G. State of the art in rotator cuff repair. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2): 341-343.
- 8. Derwin KA, Badylak SF, Steinmann SP, et al. Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg, 2010, 19(3): 467-476.
- 9. Longo UG, Carnevale A, Piergentili I, et al. Retear rates after rotator cuff surgery: a systematic review and meta-analysis. BMC Musculoskelet Disord, 2021, 22(1): 749. doi: 10.1186/s12891-021-04634-6.
- 10. 白帥帥, 強輝. 分子生物學方法促進肩袖腱-骨愈合機制研究進展. 臨床醫學進展, 2023, 13(6): 10421-10428.
- 11. Franceschi F, Ruzzini L, Longo UG, et al. Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med, 2007, 35(8): 1254-1260.
- 12. Klintberg IH, Gunnarsson AC, Svantesson U, et al. Early loading in physiotherapy treatment after full-thickness rotator cuff repair: a prospective randomized pilot-study with a two-year follow-up. Clin Rehabil, 2009, 23(7): 622-638.
- 13. Zhao S, Su W, Shah V, et al. Biomaterials based strategies for rotator cuff repair. Colloids Surf B Biointerfaces, 2017, 157: 407-416.
- 14. Romeo A, Easley J, Regan D, et al. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold: a biomechanical and histologic analysis in sheep. J Shoulder Elbow Surg, 2022, 31(2): 402-412.
- 15. Lei T, Zhang T, Ju W, et al. Biomimetic strategies for tendon/ligament-to-bone interface regeneration. Bioact Mater, 2021, 6(8): 2491-2510.
- 16. Deprés-Tremblay G, Chevrier A, Snow M, et al. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elbow Surg, 2016, 25(12): 2078-2085.
- 17. Wang L, Zhu T, Kang Y, et al. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact Mater, 2022, 16: 149-161.
- 18. Kataoka T, Kokubu T, Muto T, et al. Rotator cuff tear healing process with graft augmentation of fascia lata in a rabbit model. J Orthop Surg Res, 2018, 13(1): 200. doi: 10.1186/s13018-018-0900-4.
- 19. Bianchi E, Ruggeri M, Rossi S, et al. Innovative strategies in tendon tissue engineering. Pharmaceutics, 2021, 13(1): 89. doi: 10.3390/pharmaceutics13010089.
- 20. 劉萍, 朱威宏, 劉騫. 動物模型在肩袖損傷研究中的應用. 中南大學學報(醫學版), 2021, 46(4): 426-431.
- 21. Edelstein L, Thomas SJ, Soslowsky LJ. Rotator cuff tears: what have we learned from animal models? J Musculoskelet Neuronal Interact, 2011, 11(2): 150-162.
- 22. Komi PV. Relevance of in vivo force measurements to human biomechanics. J Biomech, 1990, 23 Suppl 1, 23-34. doi: 10.1016/0021-9290(90)90038-5.
- 23. Lomas AJ, Ryan CN, Sorushanova A, et al. The past, present and future in scaffold-based tendon treatments. Adv Drug Deliv Rev, 2015, 84: 257-277.
- 24. Li D, Wang G, Li J, et al. Biomaterials for tissue-engineered treatment of tendinopathy in animal models: A systematic review. Tissue Eng Part B Rev, 2023, 29(4): 387-413.
- 25. Chevrier A, Hurtig MB, Lavertu M. Chitosan-platelet-rich plasma implants improve rotator cuff repair in a large animal model: Pivotal study. Pharmaceutics, 2021, 13(11): 1955. doi: 10.3390/pharmaceutics13111955.
- 26. 朱以明, 姜春巖, 王滿宜. 肩關節相關生物力學介紹. 中華創傷骨科雜志, 2005, 7(9): 869-872.
- 27. Millar NL, Silbernagel KG, Thorborg K, et al. Tendinopathy. Nat Rev Dis Primers, 2021, 7(1): 1. doi: 10.1038/s41572-020-00234-1.
- 28. Lo S, Fauzi MB. Current update of collagen nanomaterials-fabrication, characterisation and its applications: A review. Pharmaceutics, 2021, 13(3): 316. doi: 10.3390/pharmaceutics13030316.
- 29. Liu A, Wang Q, Zhao Z, et al. Nitric oxide nanomotor driving exosomes-loaded microneedles for Achilles tendinopathy healing. ACS Nano, 2021, 15(8): 13339-13350.
- 30. Yang J, Kang Y, Zhao W, et al. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater, 2021, 10: 474-491.
- 31. Kim SY, Chae SW, Lee J. Effect of Poloxamer 407 as a carrier vehicle on rotator cuff healing in a rat model. J Orthop Surg Res, 2014, 9(1): 12. doi: 10.1186/1749-799X-9-12.
- 32. Kim DH, Min SG, Yoon JP, et al. Mechanical augmentation with absorbable alginate sheet enhances healing of the rotator cuff. Orthopedics, 2019, 42(1): e104-e110.
- 33. Willbold E, Wellmann M, Welke B, et al. Possibilities and limitations of electrospun chitosan-coated polycaprolactone grafts for rotator cuff tear repair. J Tissue Eng Regen Med, 2020, 14(1): 186-197.
- 34. Tang X, Shemshaki NS, Vernekar VN, et al. The treatment of muscle atrophy after rotator cuff tears using electroconductive nanofibrous matrices. Regen Eng Transl Med, 2021, 7(1): 1-9.
- 35. Zhang X, Wu Y, Han K, et al. 3-Dimensional bioprinting of a tendon stem cell-derived exosomes loaded scaffold to bridge the unrepairable massive rotator cuff tear. Am J Sports Med, 2024, 52(9): 2358-2371.
- 36. Zhao S, Xie X, Pan G, et al. Healing improvement after rotator cuff repair using gelatin-grafted poly (L-lactide) electrospun fibrous membranes. J Surg Res, 2015, 193(1): 33-42.
- 37. Lipner J, Shen H, Cavinatto L, et al. In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng Part A, 2015, 21(21-22): 2766-2774.
- 38. Tarafder S, Brito JA, Minhas S, et al. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication, 2019, 12(1): 015008. doi: 10.1088/1758-5090/ab48ca.
- 39. Su W, Wang Z, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane. Int J Nanomedicine, 2019, 14: 1835-1847.
- 40. Rocha CV, Gon?alves V, da Silva MC, et al. PLGA-based composites for various biomedical applications. Int J Mol Sci, 2022, 23(4): 2034. doi: 10.3390/ijms23042034.
- 41. Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly (lactide-co-glycolide) fibrous membranes. Int J Nanomedicine, 2014, 9: 2373-2385.
- 42. Taylor BL, Kim DH, Huegel J, et al. Localized delivery of ibuprofen via a bilayer delivery system (BiLDS) for supraspinatus tendon healing in a rat model. J Orthop Res, 2020, 38(11): 2339-2349.
- 43. Araque-Monrós MC, García-Cruz DM, Escobar-Ivirico JL, et al. Regenerative and resorbable PLA/HA hybrid construct for tendon/ligament tissue engineering. Ann Biomed Eng, 2020, 48(2): 757-767.
- 44. Zhang Q, Yang Y, Suo D, et al. A biomimetic adhesive and robust janus patch with anti-oxidative, anti-inflammatory, and anti-bacterial activities for tendon repair. ACS Nano, 2023, 17(17): 16798-16816.
- 45. Sun Y, Han F, Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear. J Mater Chem B, 2016, 4(45): 7259-7269.
- 46. Dethe MR, A P, Ahmed H, et al. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release, 2022, 343: 217-236.
- 47. Rocha J, Araújo JC, Fangueiro R, et al. Wetspun polymeric fibrous systems as potential scaffolds for tendon and ligament repair, healing and regeneration. Pharmaceutics, 2022, 14(11): 2526. doi: 10.3390/pharmaceutics14112526.
- 48. Reifenrath J, Wellmann M, Kempfert M, et al. TGF-β3 loaded electrospun polycaprolacton fibre scaffolds for rotator cuff tear repair: An in vivo study in rats. Int J Mol Sci, 2020, 21(3): 1046. doi: 10.3390/ijms21031046.
- 49. Huegel J, Kim DH, Cirone JM, et al. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion. J Orthop Res, 2017, 35(6): 1250-1257.
- 50. Min HK, Kwon OS, Oh SH, et al. Platelet-derived growth factor-BB-immobilized asymmetrically porous membrane for enhanced rotator cuff tendon healing. Tissue Eng Regen Med, 2016, 13(5): 568-578.
- 51. Wang C, Zhang X, Wang DM, et al. Optimized design of an enthesis-mimicking suture anchor-tendon hybrid graft for mechanically robust bone-tendon repair. Acta Biomater, 2024, 176: 277-292.
- 52. Benayahu D, Sharabi M, Pomeraniec L, et al. Unique collagen fibers for biomedical applications. Mar Drugs, 2018, 16(4): 102. doi: 10.3390/md16040102.
- 53. Nuss CA, Huegel J, Boorman-Padgett JF, et al. Poly-N-acetyl glucosamine (sNAG) enhances early rotator cuff tendon healing in a rat model. Ann Biomed Eng, 2017, 45(12): 2826-2836.
- 54. Learn GD, McClellan PE, Knapik DM, et al. Woven collagen biotextiles enable mechanically functional rotator cuff tendon regeneration during repair of segmental tendon defects in vivo. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 1864-1876.
- 55. Smith MJ, Bozynski CC, Kuroki K, et al. Comparison of biologic scaffolds for augmentation of partial rotator cuff tears in a canine model. J Shoulder Elbow Surg, 2020, 29(8): 1573-1583.
- 56. Peterson DR, Ohashi KL, Aberman HM, et al. Evaluation of a collagen-coated, resorbable fiber scaffold loaded with a peptide basic fibroblast growth factor mimetic in a sheep model of rotator cuff repair. J Shoulder Elbow Surg, 2015, 24(11): 1764-1773.
- 57. Omi R, Gingery A, Steinmann SP, et al. Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells. J Shoulder Elbow Surg, 2016, 25(3): 469-477.
- 58. Sevivas N, Teixeira FG, Portugal R, et al. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivo when a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear. Am J Sports Med, 2018, 46(2): 449-459.
- 59. Rothrauff BB, Smith CA, Ferrer GA, et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. J Shoulder Elbow Surg, 2019, 28(4): 654-664.
- 60. Gelse K, P?schl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev, 2003, 55(12): 1531-1546.
- 61. Zhu M, Tay ML, Callon K, et al. Overlay repair with a synthetic collagen scaffold improves the quality of healing in a rat rotator cuff repair model. J Shoulder Elbow Surg, 2019, 28(5): 949-958.
- 62. Ficklscherer A, Zhang AZ, Beer T, et al. The effect of autologous Achilles bursal tissue implants in tendon-to-bone healing of rotator cuff tears in rats. J Shoulder Elbow Surg, 2020, 29(9): 1892-1900.
- 63. Jabbari F, Babaeipour V, Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int J Biol Macromol, 2023, 240: 124484. doi: 10.1016/j.ijbiomac.2023.124484.
- 64. Lin W, Mashiah R, Seror J, et al. Lipid-hyaluronan synergy strongly reduces intrasynovial tissue boundary friction. Acta Biomater, 2019, 83: 314-321.
- 65. 黃成龍, 趙松, 程飚, 等. 微骨折技術聯合仿生水凝膠支架促進兔肩袖腱-骨愈合的實驗研究. 中國修復重建外科雜志, 2020, 34(9): 1177-1183.
- 66. Cong S, Sun Y, Lin J, et al. A synthetic graft with multilayered co-electrospinning nanoscaffolds for bridging massive rotator cuff tear in a rat model. Am J Sports Med, 2020, 48(8): 1826-1836.
- 67. Zhao Y, Peng H, Sun L, et al. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio, 2024, 26: 101032. doi: 10.1016/j.mtbio.2024.101032.
- 68. Zhang X, Fang Z, Cho E, et al. Use of a novel, reinforced, low immunogenic, porcine small intestine submucosa patch to repair a supraspinatus tendon defect in a rabbit model. Biomed Res Int, 2019, 2019: 9346567. doi: 10.1155/2019/9346567.
- 69. Lin M, Li W, Ni X, et al. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol, 2023, 11: 1250533. doi: 10.3389/fbioe.2023.1250533.
- 70. Tokunaga T, Ide J, Arimura H, et al. Local application of gelatin hydrogel sheets impregnated with platelet-derived growth factor BB promotes tendon-to-bone healing after rotator cuff repair in rats. Arthroscopy, 2015, 31(8): 1482-1491.
- 71. Bailey JR, Kim C, Alentorn-Geli E, et al. Rotator cuff matrix augmentation and interposition: A systematic review and meta-analysis. Am J Sports Med, 2019, 47(6): 1496-1506.
- 72. Sun Y, Jung HW, Kwak JM, et al. Reconstruction of large chronic rotator cuff tear can benefit from the bone-tendon composite autograft to restore the native bone-tendon interface. J Orthop Translat, 2020, 24: 175-182.
- 73. Liu Q, Yu Y, Reisdorf RL, et al. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials, 2019, 192: 189-198.
- 74. Novakova SS, Mahalingam VD, Florida SE, et al. Tissue-engineered tendon constructs for rotator cuff repair in sheep. J Orthop Res, 2018, 36(1): 289-299.
- 75. Chen Y, Xu Y, Li M, et al. Application of autogenous urine-derived stem cell sheet enhances rotator cuff healing in a canine model. Am J Sports Med, 2020, 48(14): 3454-3466.
- 76. Varvitsiotis D, Papaspiliopoulos A, Vlachou V, et al. Fascia lata allograft bridging of a rotator cuff tear in a rabbit animal model. Int J Shoulder Surg, 2014, 8(2): 39-46.
- 77. Yanke A, Dandu N, Credille K, et al. Indications and technique: Rotator cuff repair augmentation. J Am Acad Orthop Surg, 2023, 31(24): 1205-1210.
- 78. Shin MJ, Shim IK, Kim DM, et al. Engineered cell sheets for the effective delivery of adipose-derived stem cells for tendon-to-bone healing. Am J Sports Med, 2020, 48(13): 3347-3358.
- 79. Street M, Thambyah A, Dray M, et al. Augmentation with an ovine forestomach matrix scaffold improves histological outcomes of rotator cuff repair in a rat model. J Orthop Surg Res, 2015, 10: 165. doi: 10.1186/s13018-015-0303-8.
- 80. Liu GM, Pan J, Zhang Y, et al. Bridging repair of large rotator cuff tears using a multilayer decellularized tendon slices graft in a rabbit model. Arthroscopy, 2018, 34(9): 2569-2578.
- 81. Pan J, Liu GM, Ning LJ, et al. Rotator cuff repair using a decellularized tendon slices graft: an in vivo study in a rabbit model. Knee Surg Sports Traumatol Arthrosc, 2015, 23(5): 1524-1535.
- 82. Li HS, Zhou M, Huang P, et al. Histologic and biomechanical evaluation of the thoracolumbar fascia graft for massive rotator cuff tears in a rat model. J Shoulder Elbow Surg, 2022, 31(4): 699-710.
- 83. Lee KW, Lee JS, Kim YS, et al. Effective healing of chronic rotator cuff injury using recombinant bone morphogenetic protein-2 coated dermal patch in vivo. J Biomed Mater Res B Appl Biomater, 2017, 105(7): 1840-1846.
- 84. Kabuto Y, Morihara T, Sukenari T, et al. Stimulation of rotator cuff repair by sustained release of bone morphogenetic protein-7 using a gelatin hydrogel sheet. Tissue Eng Part A, 2015, 21(13-14): 2025-2033.
- 85. Kovacevic D, Gulotta LV, Ying L, et al. rhPDGF-BB promotes early healing in a rat rotator cuff repair model. Clin Orthop Relat Res, 2015, 473(5): 1644-1654.
- 86. Jiu J, Liu H, Li D, et al. 3D bioprinting approaches for spinal cord injury repair. Biofabrication, 2024, 16(3). doi: 10.1088/1758-5090/ad3a13.
- 87. Yamamoto A, Takagishi K, Osawa T, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg, 2010, 19(1): 116-120.
- 88. Zhang X, Li K, Wang C, et al. Facile and rapid fabrication of a novel 3D-printable, visible light-crosslinkable and bioactive polythiourethane for large-to-massive rotator cuff tendon repair. Bioact Mater, 2024, 37: 439-458.
- 89. Tokunaga T, Karasugi T, Arimura H, et al. Enhancement of rotator cuff tendon-bone healing with fibroblast growth factor 2 impregnated in gelatin hydrogel sheets in a rabbit model. J Shoulder Elbow Surg, 2017, 26(10): 1708-1717.
- 90. Sun Y, You Y, Jiang W, et al. 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration. Sci Adv, 2020, 6(37): eaay1422. doi: 10.1126/sciadv.aay1422.
- 91. Smietana MJ, Moncada-Larrotiz P, Arruda EM, et al. Tissue-engineered tendon for enthesis regeneration in a rat rotator cuff model. Biores Open Access, 2017, 6(1): 47-57.
- 92. Harada Y, Mifune Y, Inui A, et al. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model. J Orthop Res, 2017, 35(2): 289-296.
- 93. Du L, Wu J, Han Y, et al. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci Adv, 2024, 10(10): eadk6610. doi: 10.1126/sciadv.adk6610.
- 94. Lopiz Y, Arvinius C, García-Fernández C, et al. Repair of rotator cuff injuries using different composites. Rev Esp Cir Ortop Traumatol, 2017, 61(1): 51-62.
- 95. Yea JH, Bae TS, Kim BJ, et al. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater, 2020, 114: 104-116.

