| 1. |
蔣寧, 徐桂軍, 李浩民, 等. 距骨骨軟骨損傷的外科治療進展. 中國修復重建外科雜志, 2024, 38(3): 373-379.
|
| 2. |
Whyte GP, Bizzoco L, Gobbi A. One-step cartilage repair of full-thickness knee chondral lesions using a hyaluronic acid-based scaffold embedded with bone marrow aspirate concentrate: Long-term outcomes after mean follow-up duration of 14 years. Am J Sports Med, 2024, 52(14): 3561-3568.
|
| 3. |
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop, 2024, 11(2): e12016. doi: 10.1002/jeo2.12016.
|
| 4. |
Sharma V, Sakhalkar U, Nadkarni P, et al. Cytoprotective effect of growth factors derived from platelets on corticosteroid-treated primary anterior cruciate ligament-derived stromal cells and chondrocytes. Cureus, 2024, 16(7): e65566. doi: 10.7759/cureus.65566.
|
| 5. |
楊星, 周明旺, 王曉萍, 等. 干細胞修復軟骨損傷治療膝骨關節炎的機制與臨床研究進展. 中國骨質疏松雜志, 2024, 30(10): 1466-1471.
|
| 6. |
Rahvar TP, Abdekhodaie JM, Jooybar E, et al. An enzymatically crosslinked collagen type Ⅱ/hyaluronic acid hybrid hydrogel: A biomimetic cell delivery system for cartilage tissue engineering. Int J Biol Macromol, 2024, 279(P1): 134614. doi: 10.1016/j.ijbiomac.2024.134614.
|
| 7. |
Yuan X, Wan J, Yang Y, et al. Thermosensitive hydrogel for cartilage regeneration via synergistic delivery of SDF-1α like polypeptides and kartogenin. Carbohydr Polym, 2023, 304: 120492. doi: 10.1016/j.carbpol.2022.120492.
|
| 8. |
Ross AK, Ferati RS, Alaia JM, et al. Current and emerging techniques in articular cartilage repair. Bull Hosp Jt Dis (2013), 2024, 82(1): 91-99.
|
| 9. |
Khajouei S, Ravan H, Ebrahimi A. DNA hydrogel-empowered biosensing. Adv Colloid Interface Sci, 2020, 275: 102060. doi: 10.1016/j.cis.2019.102060.
|
| 10. |
Cao H, Duan LX, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther, 2021, 6(1): 426-426.
|
| 11. |
Cheng W, Ding Z, Zheng X, et al. Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomater Sci, 2020, 8(9): 2537-2548.
|
| 12. |
陸怡雨, 李昊. 智能水凝膠在口腔醫學領域的應用. 南京醫科大學學報 (自然科學版), 2022, 42(8): 1192-1196,1200.
|
| 13. |
楊躍娜, 胡旭芳, 劉玉珊, 等. 智能水凝膠世界. 大學化學, 2024, 39(5): 172-183.
|
| 14. |
Hoang Thi TT, Sinh LH, Huynh DP, et al. Self-assemblable polymer smart-blocks for temperature-induced injectable hydrogel in biomedical applications. Front Chem, 2020, 8: 19. doi: 10.3389/fchem.2020.00019.
|
| 15. |
Mahinroosta M, Farsangi JZ, Allahverdi A, et al. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 2018, 8: 42-55.
|
| 16. |
朱本舜, 鄭睿夫, 周亞坤, 等. 醫用自剝離水凝膠敷料的研究進展. 現代化工, 2024, 44(4): 34-39, 44.
|
| 17. |
Tang Y, Wang J, Qiu H, et al. The chondrogenic differentiation of BMSCs in collagen hydrogels and the effect of MMPs among cell-material interactions. Collagen and Leather, 2024, 6(1): 31-46.
|
| 18. |
王勇, 姚子昂, 吳海歌. 殼聚糖溫敏水凝膠在骨組織工程中的研究進展. 化工新型材料, 2022, 50(S1): 13-19.
|
| 19. |
郭偉成, 廖元太, 張洪玉. 潤滑水凝膠涂層研究進展. 清華大學學報(自然科學版), 2024, 64(3): 381-392.
|
| 20. |
Jiang Z, Qin S, Wang W, et al. Investigating the anti-inflammatory and bone repair-promoting effects of an injectable porous hydrogel containing magnesium ions in a rat periodontitis mode. Smart Materials in Medicine, 2024, 5(2): 207-220.
|
| 21. |
Shi F, Xiao D, Zhang C, et al. The effect of macropore size of hydroxyapatite scaffold on the osteogenic differentiation of bone mesenchymal stem cells under perfusion culture. Regen Biomater, 2021, 8(6): rbab050. doi: 10.1093/rb/rbab050.
|
| 22. |
Elsheikh M, Kishida R, Hayashi K, et al. Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks. Regen Biomater, 2022, 9(1): rbac010. doi: 10.1093/rb/rbac010.
|
| 23. |
Huang Z, Liu C, Zheng G, et al. Articular cartilage regeneration via induced chondrocyte autophagy by sustained release of leptin inhibitor from thermo-sensitive hydrogel through STAT3/REDD1/mTORC1 cascade. Adv Healthc Mater, 2023, 12(30): e2302181. doi: 10.1002/adhm.202302181.
|
| 24. |
Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S, et al. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci Transl Med, 2020, 12(534): eaay6853. doi: 10.1126/scitranslmed.aay6853.
|
| 25. |
Ao Y, Tang W, Tan H, et al. Hydrogel composed of type Ⅱ collagen, chondroitin sulfate and hyaluronic acid for cartilage tissue engineering. Biomed Mater Eng, 2022, 33(6): 515-523.
|
| 26. |
張新威. 3D打印rGO復合水凝膠支架用于多細胞遞送和骨修復的研究. 長春: 吉林大學, 2023.
|
| 27. |
Tian Y, Cui Y, Ren G, et al. Dual-functional thermosensitive hydrogel for reducing infection and enhancing bone regeneration in infected bone defects. Mater Today Bio, 2024, 25: 100972. doi: 10.1016/j.mtbio.2024.100972.
|
| 28. |
Hafezi M, Nouri Khorasani S, Zare M, et al. Advanced hydrogels for cartilage tissue engineering: Recent progress and future directions. Polymers (Basel), 2021, 13(23): 4199. doi: 10.3390/polym13234199.
|
| 29. |
Chen Z, Yang X, Liu X, et al. A thermodynamic theory coupling photo-chemo-mechano interactions for light-responsive hydrogel. Journal of the Mechanics and Physics of Solids, 2024, 188: 105677-105693.
|
| 30. |
Liu XY, Yang QS, Rao W. A photo-mechanical coupling theory for photoisomerization hydrogel considering the distribution state of molecular chains. International Journal of Solids and Structures, 2023, 283: 112474-112489.
|
| 31. |
張恒杰, 柳坤銳, 陳顯春, 等. 光響應智能生物粘附材料的設計與應用. 化學學報, 2023, 81(12): 1739-1753.
|
| 32. |
Tsegay F, Elsherif M, Butt H. Smart 3D printed hydrogel skin wound bandages: A review. Polymers (Basel), 2022, 14(5): 1012. doi: 10.3390/polym14051012.
|
| 33. |
Zhang W, Xue W, Jia Z, et al. Photo-driven dynamic hydrogel modulates bone marrow mesenchymal stem cells behavior for enhanced cartilage regeneration. Chemical Engineering Journal, 2024, 484: 149689-149699.
|
| 34. |
劉曉雨, 張辛芮, 張燁華, 等. 自黏附、近紅外光響應水凝膠的制備及藥物釋放性能研究. 化學通報, 2024, 87(7): 850-856.
|
| 35. |
Diego T, Lorenzo V, Elena G, et al. Visible light-mediated cross-linking of injectable gellan gum hydrogels embedding human chondrocytes. Carbohydrate Polymer Technologies and Applications, 2023, 6: 100382-100396.
|
| 36. |
薛春宇, 陳國強, 袁俊虎, 等. 應用天然水凝膠修復關節軟骨損傷的研究進展. 生物骨科材料與臨床研究, 2024, 21(1): 56-60, 70.
|
| 37. |
Zhao X, Javed B, Tian F, et al. Hydrogel on a smart nanomaterial interface to carry therapeutics for digitalized glioma treatment. Gels, 2022, 8(10): 664. doi: 10.3390/gels8100664.
|
| 38. |
Gao L, Beninatto R, Oláh T, et al. A photopolymerizable biocompatible hyaluronic acid hydrogel promotes early articular cartilage repair in a minipig model in vivo. Adv Healthc Mater, 2023, 12(26): e2300931. doi: 10.1002/adhm.202300931.
|
| 39. |
王澤文, 李陳致, 劉家河, 等. 軟骨支架材料的制備方法及優缺點. 中國組織工程研究, 2024, 28(15): 2404-2409.
|
| 40. |
Khanmohammadi M, Jalessi M, Asghari A. Biomimetic hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. BMC Res Notes, 2022, 15(1): 174. doi: 10.1186/s13104-022-06060-w.
|
| 41. |
Kim J, Park S, Park YJ, et al. Dual-phase blocks for regeneration of critical-sized bone defects. Nano Today, 2024, 54: 102120-102133.
|
| 42. |
Naghizadeh Z, Karkhaneh A, Nokhbatolfoghahaei H, et al. Cartilage regeneration with dual-drug-releasing injectable hydrogel/microparticle system: In vitro and in vivo study. J Cell Physiol, 2021, 236(3): 2194-2204.
|
| 43. |
Alqurashi Y, Elsherif M, Hendi A, et al. Optical hydrogel detector for pH measurements. Biosensors (Basel), 2022, 12(1): 40. doi: 10.3390/bios12010040.
|
| 44. |
鄭月丹, 王曉玲, 馮俊峰, 等. 刺激響應型可注射水凝膠在藥物控釋領域的研究進展. 高分子材料科學與工程, 2024, 40(9): 164-172.
|
| 45. |
Mo C, Luo R, Chen Y. Advances in the stimuli-responsive injectable hydrogel for controlled release of drugs. Macromol Rapid Commun, 2022, 43(10): e2200007. doi: 10.1002/marc.202200007.
|
| 46. |
Abdollahiyan P, Baradaran B, de la Guardia M, et al. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release, 2020, 328: 514-531.
|
| 47. |
尹祖秀, 黃婷婷, 王建英, 等. pH響應型抗菌水凝膠傷口敷料的制備及促愈合性能. 高分子材料科學與工程, 2024, 40(4): 29-39.
|
| 48. |
Suhail M, Fang CW, Khan A, et al. Fabrication and in vitro evaluation of pH-sensitive polymeric hydrogels as controlled release carriers. Gels, 2021, 7(3): 110. doi: 10.3390/gels7030110.
|
| 49. |
Sagar P, Kumar G, Handa A. Progressive use of nanocomposite hydrogels materials for regeneration of damaged cartilage and their tribological mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2024, 238(3-4): 83-91.
|
| 50. |
Qureshi RUAM, Arshad N, Rasool A, et al. pH-responsive chitosan dendrimer hydrogels enabling controlled cefixime release. European Polymer Journal, 2024, 219: 113377-113392.
|
| 51. |
黃鵬飛, 趙俊杰, 張兆坤, 等. 活性氧清除性水凝膠在骨關節炎治療中的研究進展. 中華骨科雜志, 2024, 44(17): 1184-1190.
|
| 52. |
李萌, 劉曉菲, 李露穎, 等. 壓電水凝膠材料在骨組織工程中應用研究進展. 中國實用口腔科雜志, 2024, 17(6): 709-715.
|
| 53. |
Liu D, Wang X, Gao C, et al. Biodegradable piezoelectric-conductive integrated hydrogel scaffold for repair of osteochondral defects. Adv Mater, 2024, 36(45): e2409400. doi: 10.1002/adma.202409400.
|
| 54. |
Horrocks MS, Zhurenkov KE, Malmstr?m J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng, 2024, 8(3): 031503. doi: 10.1063/5.0218251.
|
| 55. |
陳品叡, 裴錫波, 薛軼元. 磁響應水凝膠在骨組織工程中的作用與優勢. 中國組織工程研究, 2024, 28(3): 452-457.
|
| 56. |
Taghizadeh S, Tayebi L, Akbarzadeh M, et al. Magnetic hydrogel applications in articular cartilage tissue engineering. J Biomed Mater Res A, 2024, 112(2): 260-275.
|
| 57. |
謝李欣, 杜哲菲, 彭秋霞, 等. 超聲響應型納米材料在抗炎治療中的分類與應用. 四川大學學報 (醫學版), 2024, 55(4): 793-799.
|
| 58. |
趙嬋, 劉昊, 陳潔瑩, 等. 溫度/超聲雙重響應型相變液滴對水凝膠結構性能的調控. 南京醫科大學學報 (自然科學版), 2022, 42(7): 948-956.
|
| 59. |
Long S, Huang D, Ma Z, et al. A sonication-induced silk-collagen hydrogel for functional cartilage regeneration. J Mater Chem B, 2022, 10(26): 5045-5057.
|
| 60. |
Kang M, Liang H, Hu Y, et al. Gelatin-based hydrogels with tunable network structure and mechanical property for promoting osteogenic differentiation. Int J Biol Macromol, 2024, 281(Pt 1): 136312. doi: 10.1016/j.ijbiomac.2024.136312.
|
| 61. |
王丹鈺, 郭夢珂, 郭子涵, 等. 基于細胞捕獲和釋放的刺激響應型多功能核酸水凝膠. 化學進展, 2024, 36(10): 1567-1580.
|