| 1. |
Xu X, Li N, Wu Y, et al. Zhuifeng tougu capsules inhibit the TLR4/MyD88/NF-κB signaling pathway and alleviate knee osteoarthritis: In vitro and in vivo experiments. Front Pharmacol, 2022, 13: 951860. doi: 10.3389/fphar.2022.951860.
|
| 2. |
Zhou J, Liu C, Sun Y, et al. Genetically predicted circulating levels of copper and zinc are associated with osteoarthritis but not with rheumatoid arthritis. Osteoarthritis Cartilage, 2021, 29(7): 1029-1035.
|
| 3. |
趙冬妮, 白玉, 梅軼芳, 等. 微量元素對骨關節炎影響的研究進展. 中國實用內科雜志, 2019, 39(11): 991-993.
|
| 4. |
Zhang S, Sun L, Zhang J, et al. Adverse impact of heavy metals on bone cells and bone metabolism dependently and independently through anemia. Adv Sci (Weinh), 2020, 7(19): 2000383. doi: 10.1002/advs.202000383.
|
| 5. |
中華醫學會骨科學分會關節外科學組. 骨關節炎診療指南 (2018年版). 中華骨科雜志, 2018, 38(12): 705-715.
|
| 6. |
Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis, 1957, 16(4): 494-502.
|
| 7. |
曾凡, 陳柏屹, 王康, 等. 加味獨活寄生合劑對膝骨關節炎模型兔膝關節軟骨組織細胞自噬及凋亡相關蛋白的影響. 中醫雜志, 2022, 63(8): 773-780.
|
| 8. |
牟利民, 張文豪, 張思平, 等. 絕經后女性退變性膝骨關節炎疼痛與性激素水平及關節液炎性因子的相關性研究. 中國全科醫學, 2022, 25(29): 3652-3657.
|
| 9. |
王海英, 丁曉, 楊立, 等. 不同分期骨關節炎關節液中相關降解酶的表達差異. 中國組織工程研究, 2019, 23(23): 3609-3615.
|
| 10. |
李國勇. 相關因素與膝關節骨關節炎結構中微量元素含量的關系及微量元素之間相關性研究. 南昌: 南昌大學, 2022.
|
| 11. |
Mazarakioti EC, Zotos A, Thomatou AA, et al. Inductively coupled plasma-mass spectrometry (ICP-MS), a useful tool in authenticity of agricultural products’ and foods’ origin. Foods, 2022, 11(22): 3705. doi: 10.3390/foods11223705.
|
| 12. |
Zhao T, Chen T, Qiu Y, et al. Trace element profiling using inductively coupled plasma mass spectrometry and its application in an osteoarthritis study. Anal Chem, 2009, 81(9): 3683-3692.
|
| 13. |
李博, 胡如印, 孫立, 等. 膝關節液微量元素含量與骨性關節炎關節鏡下Outerbridge分級關系的研究. 中國矯形外科雜志, 2016, 24(3): 265-269.
|
| 14. |
薛志超, 常祺, 朱履剛, 等. 膝關節液微量元素濃度對骨性關節炎患者病情程度的評估價值分析. 四川解剖學雜志, 2020, 28(3): 165-166.
|
| 15. |
Roczniak W, Brodziak-Dopiera?a B, Cipora E, et al. Factors that affect the content of cadmium, nickel, copper and zinc in tissues of the knee joint. Biol Trace Elem Res, 2017, 178(2): 201-209.
|
| 16. |
Yazar M, Sarban S, Kocyigit A, et al. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol Trace Elem Res, 2005, 106(2): 123-132.
|
| 17. |
Zhang X, Wang Q, Wu J, et al. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state. Proc Natl Acad Sci U S A, 2018, 115(15): 3828-3833.
|
| 18. |
Suska F, Esposito M, Gretzer C, et al. IL-1alpha, IL-1beta and TNF-alpha secretion during in vivo/ex vivo cellular interactions with titanium and copper. Biomaterials, 2003, 24(3): 461-468.
|
| 19. |
Huang CC, Chiou CH, Liu SC, et al. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J Pineal Res, 2019, 66(3): e12560. doi: 10.1111/jpi.12560.
|
| 20. |
Na HS, Park JS, Cho KH, et al. Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis. Front Immunol, 2020, 11: 730. doi: 10.3389/fimmu.2020.00730.
|
| 21. |
Guan T, Wu Z, Xu C, et al. The association of trace elements with arthritis in US adults: NHANES 2013-2016. J Trace Elem Med Biol, 2023, 76: 127122. doi: 10.1016/j.jtemb.2022.127122.
|
| 22. |
Huang L, Li P, Guo L, et al. Zinc finger protein 521 attenuates osteoarthritis via the histone deacetylases 4 in the nucleus. Bioengineered, 2022, 13(6): 14489-14502.
|
| 23. |
Zhou T, Ran J, Xu P, et al. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr Polym, 2022, 292: 119667. doi: 10.1016/j.carbpol.2022.119667.
|
| 24. |
Chen L, Tiwari SR, Zhang Y, et al. Facile synthesis of hollow MnO2 nanoparticles for reactive oxygen species scavenging in osteoarthritis. ACS Biomater Sci Eng, 2021, 7(4): 1686-1692.
|
| 25. |
Li G, Cheng T, Yu X. The impact of trace elements on osteoarthritis. Front Med (Lausanne), 2021, 8: 771297. doi: 10.3389/fmed.2021.771297.
|