1. |
張志成, 孫天勝. 軟骨損傷臨床治療進展. 中華外科雜志, 2006, 44(12): 862-864.
|
2. |
姜鑫, 張益民, 李漢秀, 等. 膝關節軟骨損傷的組織工程學治療. 中國組織工程研究與臨床康復, 2007, 11(2): 328, 339.
|
3. |
Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials, 2012, 33(10): 2848-2857.
|
4. |
Feng XX, Zhang LL, Chen JY, et al. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. Int J Biol Macromol, 2007, 40(2): 105-111.
|
5. |
Swann AC, Seedhom BB. Improved techniques for measuring the indentation and thickness of articular cartilage. Proc Insth Mech Eng H, 1989, 202(3): 143-150.
|
6. |
Hunziker EB. Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements. Clin Orthop Relat Res, 1999, (367 Suppl): S135-146.
|
7. |
Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000, 21(24): 2589-2598.
|
8. |
Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials, 2010, 31(14): 3976-3985.
|
9. |
王建, 劉杰, 田華科, 等. 不同種子細胞復合殼聚糖水凝膠構建可注射組織工程髓核的比較研究. 中國修復重建外科雜志, 2010, 24(7): 806-810.
|
10. |
Shi C, Zhu Y, Ran X, et al. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res, 2006, 133(2): 185-192.
|
11. |
Ghaznavi AM, Kokai LE, Lovett ML, et al. Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair. Ann Plast Surg, 2011, 66(3): 273-279.
|
12. |
Mauney JR, Cannon GM, Lovett ML, et al. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials, 2011, 32(3): 808-818.
|
13. |
韓寧波, 趙建寧. 軟骨組織工程常用支架制備技術. 中國組織工程研究與臨床康復, 2008, 12(19): 3694-3696.
|
14. |
郭忠鵬, 蔣電明. 新型組織工程軟骨支架材料及其構建技術的改進. 中國組織工程研究與臨床康復, 2008, 12(36): 7076-7080.
|
15. |
Homicz MR, Schumacher BL, Sah RL, et al. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol Head Neck Surg, 2002, 127(5): 398-408.
|
16. |
Dozin B, Malpeli M, Camardella L, et al. Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol, 2002, 21(5): 449-459.
|
17. |
Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001, 98(8): 2396-2402.
|
18. |
Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004, 103(5): 1669-1675.
|
19. |
Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893): 41-49.
|
20. |
Zhao L, Weir MD, Xu HH. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials, 2010, 31(25): 6502-6510.
|
21. |
Mao M, He J, Liu Y, et al. Ice-template-induced silk fibroin-chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta Biomater, 2012, 8(6): 2175-2184.
|
22. |
Muzio G, Vernè E, Canuto RA, et al. Shock waves induce activity of human osteoblast-like cells in bioactive scaffolds. J Trauma, 2010, 68(6): 1439-1444.
|