1. |
Scott TG, Blackburn G, Ashley M, et al. Advances in bionanomaterials for bone tissue engineering. J Nanosci Nanotechnol, 2013, 13(1): 1-22.
|
2. |
Jakob F, Ebert R, Ignatius A, et al. Bone tissue engineering in osteoporosis. Maturitas, 2013, 75(2): 118-124.
|
3. |
Honda H, Tamai N, Naka N, et al. Bone tissue engineering with bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaria defect model. J Artif Organs, 2013. [Epub ahead of print].
|
4. |
參考文獻.
|
5. |
Haidar ZS, Hamdy RC, Tabrizian M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnol Lett, 2009, 31(12): 1825-1835.
|
6. |
Drury JL, Boontheekul T, Mooney DJ. Cellular cross-linking of peptide modified hydrogels. J Biomech Eng, 2005, 127(2): 220-228.
|
7. |
Ohsumi H, Hirata H, Nagakura T, et al. Enhancement of perineurial repair and inhibition of nerve adhesion by viscous injectable pure alginate sol. Plast Reconstr Surg, 2005, 116(3): 823-830.
|
8. |
Singh B, Sharma DK, Gupta A. The controlled and sustained release of a fungicide from starch and alginate beads. J Environ Sci Health B, 2009, 44(2): 113-122.
|
9. |
Poldervaart MT, Wang H, van der Stok J, et al. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One, 2013, 8(8): e72610.
|
10. |
Reyes R, Delgado A, Sánchez E, et al. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med, 2012. [Epub ahead of print].
|
11. |
Park Y, Sugimoto M, Watrin A, et al. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage, 2005, 13(6): 527-536.
|
12. |
Pors Nielsen S. The biological role of strontium. Bone, 2004, 35(3): 583-588.
|
13. |
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci, 2006, 6(8): 623-633.
|
14. |
Cowan CM, Soo C, Ting K, et al. Evolving concepts in bone tissue engineering. Curr Top Dev Biol, 2005, 66: 239-285.
|
15. |
Paige KT, Cima LG, Yaremchuk MJ, et al. De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg, 1996, 97(1): 168-180.
|
16. |
Xia Y, Mei F, Duan Y, et al. Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res A, 2012, 100(4): 1044-1050.
|
17. |
Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol, 1990, 8(3): 71-78.
|
18. |
Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev, 1998, 31(3): 267-285.
|
19. |
Peng S, Zhou G, Luk KD, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem, 2009, 23(1-3): 165-174.
|
20. |
Capuccini C, Torricelli P, Sima F, et al. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater, 2008, 4(6): 1885-1893.
|
21. |
Barzegar-Jalali M, Hanaee J, Omidi Y, et al. Preparation and evaluation of sustained release calcium alginate beads and matrix tablets of acetazolamide. Drug Res (Stuttg), 2013, 63(2): 60-64.
|
22. |
Ashton RS, Banarjee A, Punyani S, et al. Scaffolds based on degradable alginate hydrogels and poly (lactide-co-glycolide) microspheres for stem cell culture. Biomaterials, 2007, 28(36): 5518-5525.
|
23. |
Mitalipova MM, Rao RR, Hoyer DM, et al. Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol, 2005, 23(1): 19-20.
|