1. |
Oberpenning F, Meng J, Yoo JJ, et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol, 1999, 17(2): 149-155.
|
2. |
Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367(9518): 1241-1246.
|
3. |
Atala A. Tissue engineering of human bladder. Br Med Bull, 2011, 97: 81-104.
|
4. |
Brown AL, Farhat W, Merguerian PA, et al. 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials, 2002, 23(10): 2179-2190.
|
5. |
Zhu WD, Xu YM, Feng C, et al. Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World J Urol, 2010, 28(4): 493-498.
|
6. |
袁銘, 李漢忠, 張玉石, 等. 豬源性膀胱無細胞基質在異種移植中的生物安全性. 中國組織工程研究與臨床康復, 2008, 12(40): 7845-7849.
|
7. |
Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods, 2010, 16(5): 1201-1211.
|
8. |
楊斌, 孫則禹, 周六化, 等. 多孔的保留有生物活性因子的膀胱無細胞基質及制備方法: 中國, ZL 2008 1 0020808.0. 2012-7-25.
|
9. |
Zhou L, Yang B, Sun C, et al. Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model. Tissue Eng Part A, 2013, 19(1-2): 264-276.
|
10. |
陶亮, 李強, 任昊楨, 等. 緩釋bFGF膠原膜修復豬膽管缺損的實驗研究. 中國修復重建外科雜志, 2013, 27(2): 212-218.
|
11. |
Duan Y, Learoyd J, Meliton AY, et al. Inhibition of Pyk2 blocks airway inflammation and hyperresponsiveness in a mouse model of asthma. Am J Respir Cell Mol Biol, 2010, 42(4): 491-497.
|
12. |
吳葆菁, 朱軍, 檀衛平, 等. 地塞米松對急性過敏性哮喘小鼠肺AQP5表達的影響. 南方醫科大學學報, 2008, 28(9): 1670-1673.
|
13. |
Atala A. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs. Clin Plast Surg, 2003, 30(4): 649-667.
|
14. |
Atala A. Bioengineered tissues for urogenital repair in children. Pediatr Res, 2008, 63(5): 569-575.
|
15. |
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
|
16. |
Chun SY, Lim GJ, Kwon TG, et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials, 2007, 28(29): 4251-4256.
|
17. |
Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem, 1997, 67(4): 478-491.
|
18. |
Yang B, Zhou L, Sun Z, et al. In vitro evaluation of the bioactive factors preserved in porcine small intestinal submucosa through cellular biological approaches. J Biomed Mater Res A, 2010, 93(3): 1100-1109.
|
19. |
Bolland F, Korossis S, Wilshaw SP, et al. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials, 2007, 28(6): 1061-1070.
|
20. |
Merguerian PA, Reddy PP, Barrieras DJ, et al. Acellular bladder matrix allografts in the regeneration of functional bladders: evaluation of large-segment (> 24 cm) substitution in a porcine model. BJU Int, 2000, 85(7): 894-898.
|
21. |
Chen BS, Zhang SL, Geng H, et al. Ex vivo functional evaluation of isolated strips in BAMG tissue-engineered bladders. Int J Artif Organs, 2009, 32(3): 159-165.
|
22. |
Piechota HJ, Dahms SE, Probst M, et al. Functional rat bladder regeneration through xenotransplantation of the bladder acellular matrix graft. Br J Urol, 1998, 81(4): 548-559.
|
23. |
Ayyildiz A, Nuhoglu B, Huri E, et al. Using porcine acellular collagen matrix (Pelvicol) in bladder augmentation: experimental study. Int Braz J Urol, 2006, 32(1): 88-93.
|
24. |
Kwon TG, Yoo JJ, Atala A. Local and systemic effects of a tissue engineered neobladder in a canine cystoplasty model. J Urol, 2008, 179(5): 2035-2041.
|
25. |
Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res, 2012, 110(1): 159-173.
|
26. |
Kim MS, Ahn HH, Shin YN, et al. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials, 2007, 28(34): 5137-5143.
|
27. |
Horst M, Madduri S, Milleret V, et al. A bilayered hybrid microfibrous PLGA—acellular matrix scaffold for hollow organ tissue engineering. Biomaterials, 2013, 34(5): 1537-1545.
|
28. |
Ceonzo K, Gaynor A, Shaffer L, et al. Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Eng, 2006, 12(2): 301-308.
|