1. |
Litwic A, Edwards MH, Dennison EM, et al. Epidemiology and burden of osteoarthritis. Br Med Bull, 2013, 105: 185-199.
|
2. |
Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin North Am, 2013, 39(1): 1-19.
|
3. |
Kim KH, Bin SI, Kim JM. The correlation between posterior tibial slope and maximal angle of flexion after total knee arthroplasty. Knee Surg Relat Res, 2012, 24(3): 158-163.
|
4. |
Fitzpatrick CK, Clary CW, Laz PJ, et al. Relative contributions of design, alignment, and loading variability in knee replacement mechanics. J Orthop Res, 2012, 30(12): 2015-2024.
|
5. |
Shi X, Shen B, Kang P, et al. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2012. [Epub ahead of print].
|
6. |
Iorio R, Bolle G, Conteduca F, et al. Accuracy of manual instrumentation of tibial cutting guide in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2012. [Epub ahead of print].
|
7. |
Nam D, Dy CJ, Cross MB, et al. Cadaveric results of an accelerometer based, extramedullary navigation system for the tibial resection in total knee arthroplasty. Knee, 2012, 19(5): 617-621.
|
8. |
Kuzyk PR, Higgins GA, Tunggal JA, et al. Computer navigation vs extramedullary guide for sagittal alignment of tibial components: radiographic study and meta-analysis. J Arthroplasty, 2012, 27(4): 630-637.
|
9. |
Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg (Br), 1994, 76(5): 745-749.
|
10. |
Kapandji IA. The knee//Kapandji IA. The physiology of the joint. 5th ed. Edinburgh: Churchill Livingstore, 1987: 74.
|
11. |
Fujimoto E, Sasashige Y, Masuda Y, et al. Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2012. [Epub ahead of print].
|
12. |
Brazier J, Migaud H, Gougeon F, et al. Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot, 1996, 82(3): 195-200.
|
13. |
Moore TM, Harvey JP Jr. Roentgenographic measurement of tibial-plateau depression due to fracture. J Bone Joint Surg (Am), 1974, 56(1): 155-160.
|
14. |
de Kroon KE, Houterman S, Janssen RP. Leg alignment and tibial slope after minimal invasive total knee arthroplasty: a prospective, randomized radiological study of intramedullary versus extramedullary tibial instrumentation. Knee, 2012, 19(4): 270-274.
|
15. |
Talmo CT, Cooper AJ, Wuerz T, et al. Tibial component alignment after total knee arthroplasty with intramedullary instrumentation: a prospective analysis. J Arthroplasty, 2010, 25(8): 1209-1215.
|
16. |
曲鐵兵, 曾紀洲, 林源, 等. 華北地區成人正常脛骨內側平臺后傾角的測量及臨床意義. 中華骨科雜志, 2003, 23 (8): 455-458.
|
17. |
Soyer J, Iborra JP, Pries P, et al. Mid-term behavior of the bone fixation in non-cemented Miller-Galante 1 total knee arthroplasty. Rev Chir Orthop Reparatrice Appar Mot, 2001, 87(1): 40-49.
|
18. |
Malviya A, Lingard EA, Weir DJ, et al. Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc, 2009, 17(5): 491-498.
|
19. |
Weber P, Schröder C, Utzschneider S, et al. Does increased tibial slope reduce the wear rate of unicompartmental knee prostheses? An in vitro investigation. Orthopade, 2012, 41(4): 298-302.
|