1. |
沈學峰. 大鼠脊髓損傷后二次繼發性損傷的發現及其治療. 西安: 第四軍醫大學: 2006.
|
2. |
焦西英, 程希平, 錢新宏, 等. 脊髓壞死面積的測量方法介紹. 神經解剖學雜志, 2006, 22(3): 356-358.
|
3. |
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull, 1999, 49(6): 377-391.
|
4. |
Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells from guiding strands in the injuryed spinal cord and promote recovery. Proc Natl Acad Sci U S A, 2002, 99(4): 2199-2204.
|
5. |
Woodlbury D, Schwarz EJ, Proclop DJ, et al. Adult rat and hunan bone marrow stromal cells ditterentiate into neurons. J Neurosci Res, 2000, 61(4): 364-370.
|
6. |
Novikova LN, Brohlin M, Kingham PJ, et al. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy, 2011, 13(7): 873-887.
|
7. |
Zurita M, Otero L, Aguayo C, et al. Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells. Cytotherapy, 2010, 12(4): 522-537.
|
8. |
Park KW, Eglitis MA, Mouradian MM. Protection of migral neurous by GDNF-engineered marrow cell trancplantation. Neurosci Res, 2001, 40(4): 315-323.
|
9. |
Yazdani SD, Pedram M, Hafizi M, et al. A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rats. Tissue Cell, 2012, 44(4): 205-213.
|
10. |
Pal R, Gopinath C, Rao NM, et al. Functional recovery after transplantation of bone marrow-derived human mesenchymal stromal cells in a rat model of spinal cord injury. Cytotherapy, 2010, 12(6): 792-806.
|
11. |
Zhang JF, Zhao FS, Wu G, et al. Therapeutic effect of co-transplantation of neuregulin 1-transfected-Schwann cells and bone marrow stromal cells on spinal cord hemisection syndrome. Neuroscience, 2011, 497(2): 128-133.
|
12. |
祖波, 尹宗生. 機械性脊髓損傷模型的建立及其評價. 中國臨床康復, 2006, 10(12): 151-153.
|
13. |
Coumans JV, Lin TT, Dai HN, et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci, 2001, 21(23): 9334-9344.
|
14. |
Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol, 2011, 24(6): 577-583.
|
15. |
游思維, 蘇國輝. 促進中樞神經損傷再生的探索之路. 中國處方藥, 2004, 3(2): 30-33.
|
16. |
Rhodes KE, Moon LD, Fawcett JW. Inhibiting cell proliferation during formation of the glial scar effect on axon regeneration in the CNS. Neuroscience, 2003, 120(1): 41-56.
|
17. |
Tang X, Davies JE, Davies SJ. Changes in distribution, cell associations and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2 and tenascin-C during acute to chronic maturation of spinal cord scar. J Neurosci Res, 2003, 71(3): 427-444.
|
18. |
Minor K, Tang X, Kahrilas G, et al. Decorin promotes robust axon growth on inhibitory CSPGs and myelin via a direct effect on neurons. Neuroboil Dis, 2008, 32(1): 88-95.
|
19. |
Willerth SM, Sakiyama-Elbert SE. Cell therapyfor spinal cord regeneration. Adv Drug Deliv Rev, 2008, 60(2): 263-276.
|
20. |
Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anay Rec, 2001, 263(4): 396-404.
|
21. |
Ruff CA, Wilcox JT, Fehlings MG, et al. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol, 2012, 235(1): 78-90.
|
22. |
Wu B, Sun L, Li P, et al. Transplantation of oligodendrocyte precursor cells improves myelination and promotes functional recovery after spinal cord injury. Injury, 2012, 43(6): 794-801.
|