1. |
Horner EA, Kirkham J, Wood D, et al. Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng Part B Rev, 2010, 16(2): 263-271.
|
2. |
許子星, 陳建庭, 尹詩衡, 等. 氨等離子體錨定短肽的消旋聚乳酸骨支架研究. 中國修復重建外科雜志, 2010, 24(11): 1376-1385.
|
3. |
Xu ZX, Li T, Zhong ZM, et al. Amide-linkage formed between ammonia plasma treated poly (D, L-lactide acid) scaffolds and bio-peptides: enhancement of cell adhesion and osteogenic differentiation in vitro. Biopolymers, 2011, 95(10): 682-694.
|
4. |
Kraus KH, Kadiyala S, Wotton H, et al. Critically sized osteo-periosteal femoral defects: a dog model. J Invest Surg, 1999, 12(2): 115-124.
|
5. |
Zeng Q, Li X, Beck G, et al. Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone, 2007, 40(2): 374-381.
|
6. |
Livak K J, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.
|
7. |
Cook SD, Salkeld SL, Patron LP, et al. Healing course of primate ulna segmental defects treated with osteogenic protein-1. J Invest Surg, 2002, 15(2): 69-79.
|
8. |
Karaoglu S, Baktir A, Kabak S, et al. Experimental repair of segmental bone defects in rabbits by demineralized allograft covered by free autogenous periosteum. Injury, 2002, 33(8): 679-683.
|
9. |
Tsuchida H, Hashimoto J, Crawford E, et al. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res, 2003, 21(1): 44-53.
|
10. |
Betz OB, Betz VM, Nazarian A, et al. Direct percutaneous gene delivery to enhance healing of segmental bone defects. J Bone Joint Surg (Am), 2006, 88(2): 355-365.
|
11. |
Vögelin E, Jones NF, Huang JI, et al. Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J Bone Joint Surg (Am), 2005, 87(6): 1323-1331.
|
12. |
Megas P. Classification of non-union. Injury, 2005, 36 Suppl 4: S30-S37.
|
13. |
Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg (Br), 2002, 84(8): 1093-1110.
|
14. |
Wang S, Cui W, Bei J. Bulk and surface modifications of polylactide. Anal Bioanal Chem, 2005, 381(3): 547-556.
|
15. |
Shekaran A, García AJ. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A, 2011, 96(1): 261-272.
|
16. |
Barros RR, Novaes AB Jr, Papalexiou V, et al. Effect of biofunctionalized implant surface on osseointegration: a histomorphometric study in dogs. Braz Dent J, 2009, 20(2): 91-98.
|
17. |
Shim JH, Moon TS, Yun MJ, et al. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J Mater Sci Mater Med, 2012, 23(12): 2993-3002.
|
18. |
Thomsen JS, Laib A, Koller B, et al. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc, 2005, 218(Pt 2): 171-179.
|
19. |
Cowan CM, Aghaloo T, Chou YF, et al. MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng, 2007, 13(3): 501-512.
|
20. |
Patel M, Dunn TA, Tostanoski S, et al. Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells. J Tissue Eng Regen Med, 2010, 4(6): 422-436.
|
21. |
Huang W, Carlsen B, Wulur I, et al. BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold. Exp Cell Res, 2004, 299(2): 325-334.
|
22. |
Navarro M, Michiardi A, Castaño O, et al. Biomaterials in orthopaedics. J R Soc Interface, 2008, 5(27): 1137-1158.
|
23. |
Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18): 3413-3431.
|
24. |
Cai K, Yao K, Yang Z, et al. Surface modification of three-dimensional poly(d, l-lactic acid) scaffolds with baicalin: a histological study. Acta Biomater, 2007, 3(4): 597-605.
|
25. |
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000, 21(23): 2335-2346.
|