1. |
Li CQ, Huang B, Luo G, et al. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility. J Mater Sci Mater Med, 2010, 21(2): 741-751.
|
2. |
Koepsell L, Zhang L, Neufeld D, et al. Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus. Macromol Biosci, 2011, 11(3): 391-399.
|
3. |
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
|
4. |
Wan Y, Feng G, Shen FH, et al. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials, 2008, 29(6): 643-652.
|
5. |
Mercuri JJ, Gill SS, Simionescu DT. Novel tissue-derived biomimetic scaffold for regenerating the human nucleus pulposus. J Biomed Mater Res A, 2011, 96(2): 422-435.
|
6. |
Zhang R, Ma PX. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromol Biosci, 2004, 4(2): 100-111.
|
7. |
許海委, 徐寶山, 楊強, 等. 細胞共培養法誘導兔脂肪來源干細胞向軟骨細胞分化的實驗研究. 中國修復重建外科雜志, 2013, 27(2): 193-198.
|
8. |
楊強, 彭江, 盧世璧, 等. 軟骨脫細胞基質多孔支架與骨髓基質干細胞體外構建組織工程軟骨的研究. 中華醫學雜志, 2011, 91(17): 1161-1166.
|
9. |
李長青, 周躍. 椎間盤組織工程支架材料研究進展. 中國修復重建外科雜志, 2005, 19(12): 1033-1035.
|
10. |
Calderon L, Collin E, Velasco-Bayon D, et al. Type II collagen-hyaluronan hydrogel—a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater, 2010, 20: 134-48.
|
11. |
Wang B, Borazjani A, Tahai M, et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrowmononuclear cells. J Biomed Mater Res A, 2010, 94(4): 1100-1110.
|
12. |
Stapleton TW, Ingram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissueengineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242.
|
13. |
Zhao Y, Zhang Z, Wang J, et al. Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. Artif Organs, 2012, 36(3): 247-255.
|
14. |
黃惠民, 馬良龍, 任宏, 等. 骨髓間質干細胞和脫細胞基質構建組織工程血管的動物實驗. 中華醫學雜志, 2007, 87(48): 3440-3442.
|
15. |
Du L, Wu X. Development and characterization of a full-thickness acellular porcine cornea matrix for tissueengineering. Artif Organs, 2011, 35(7): 691-705.
|
16. |
Cheng HL, Loai Y, Beaumont M, et al. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonanceimaging study. Magn Reson Med, 2010, 64(2): 341-348.
|
17. |
Xu CC, Chan RW, Weinberger DG, et al. A bovine acellular scaffold for vocal fold reconstruction in a rat model. J Biomed Mater Res A, 2010, 92(1): 18-32.
|
18. |
Zhuang Y, Huang B, Li CQ, et al. Construction of tissue-engineered composite intervertebral disc and preliminary morphological and biochemical evaluation. Biochem Biophys Res Commun, 2011, 407(2): 327-332.
|
19. |
潘勇, 周躍, 郝勇, 等. 脫礦脫細胞骨基質環支架體外構建組織工程化椎間盤纖維環. 中國脊柱脊髓雜志, 2009, 19(6): 451-457.
|
20. |
Bowles RD, Gebhard HH, Härtl R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A, 2011, 108(32): 13106-13111.
|