1. |
Risau W. Mechanisms of angiogenesis. Nature, 1997, 386(6626): 671-674.
|
2. |
Yamaguchi T, Sawa Y, Miyamoto Y, et al. Therapeutic angiogenesis induced by injecting hepatocyte growth factor in ischemic canine hearts. Surg Today, 2005, 35(10): 855-860.
|
3. |
Miyagawa S, Sawa Y, Fukuda K, et al. Angiogenic gene cell therapy using suicide gene system regulates the effect of angiogenesis in infarcted rat heart. Transplantation, 2006, 81(6): 902-907.
|
4. |
Taniyama Y, Morishita R, Aoki M, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther, 2001, 8(3): 181-189.
|
5. |
Yoshimura K, Shigeura T, Matsumoto D, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol, 2006, 208(1): 64-76.
|
6. |
Matsumoto D, Sato K, Gonda K, et al. Cell-assisted lipotransfer: Supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng, 2006, 12(12): 3375-3382.
|
7. |
Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg, 2008, 34(9): 1178-1185.
|
8. |
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13(12): 4279-4295.
|
9. |
Tallone T, Realini C, Bohmler A, et al. Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res, 2011, 4(2): 200-210.
|
10. |
Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications: a review. Cell Prolif, 2011, 44(1): 86-98.
|
11. |
Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg, 2001, 27(9): 819-826.
|
12. |
Christiaens V, Lijnen HR. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol, 2010, 318(1-2): 2-9.
|
13. |
Yoshimura K, Suga H, Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med, 2009, 4(2): 265-273.
|
14. |
Lee EY, Xia Y, Kim WS, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen, 2009, 17(4): 540-547.
|
15. |
Rubina K, Kalinina N, Efimenko A, et al. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A, 2009, 15(8): 2039-2050.
|
16. |
Eto H, Kato H, Suga H, et al. The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg, 2012, 129(5): 1081-1092.
|
17. |
Maumus M, Peyrafitte JA, D’Angelo R, et al. Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond), 2011, 35(9): 1141-1153.
|
18. |
Traktuev DO, Prater DN, Merfeld-Clauss S, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res, 2009, 104(12): 1410-1420.
|
19. |
Butala P, Hazen A, Szpalski C, et al. Endogenous stem cell therapy enhances fat graft survival. Plast Reconstr Surg, 2012, 130(2): 293-306.
|