1. |
Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and earlyresults. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J, 2000, 9(5): 445-450.
|
2. |
Obuchowski AM, Curcin A, Kostuik JP. Osteoporosis: Medical and Surgical Options//Mathis JM, Deramond H, Belkoff SM. Percutaneous Vertebroplasty. New York: Springer Verlag, 2002: 25-39.
|
3. |
Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J Biomed Mater Res B Appl Biomater, 2006, 76(2): 456-468.
|
4. |
Hernandez L, Munoz ME, Goni I, et al. New injectable and radiopaque antibiotic loaded acrylic bone cements. J Biomed Mater Res B Appl Biomater, 2008, 87(2): 312-320.
|
5. |
Kurtz SM, Villarraga ML, Zhao K, et al. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Biomaterials, 2005, 26(17): 3699-3712.
|
6. |
Grados F, Depriester C, Cayrolle G, et al. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford), 2000, 39(12): 1410-1414.
|
7. |
Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol, 2006, 27(1): 217-223.
|
8. |
Ahn Y, Lee JH, Lee HY, et al. Predictive factors for subsequent vertebral fracture after percutaneous vertebroplasty. J Neurosurg Spine, 2008, 9(2): 129-136.
|
9. |
Wasnich RD. Vertebral fracture epidemiology. Bone, 1996, 18(3 Suppl): 179S-183S.
|
10. |
Baroud G, Nemes J, Heini P, et al. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J, 2003, 12(4): 421-426.
|
11. |
Nakano M, Hirano N, Matsuura K, et al. Percutaneous transpedicular vertebroplasty with calcium phosphate cement in the treatment of osteoporotic vertebral compression and burst fractures. J Neurosurg, 2002, 97(3 Suppl): 287-293.
|
12. |
Thomas MV, Puleo DA. Calcium sulfate: Properties and clinical applications. J Biomed Mater Res B Appl Biomater, 2009, 88(2): 597-610.
|
13. |
He Q, Chen H, Huang L, et al. Porous surface modified bioactive bone cement for enhanced bone bonding. PLoS One, 2012, 7(8): e42525.
|
14. |
Berlemann U, Ferguson SJ, Nolte LP, et al. Adjacent vertebral failure after vertebroplasty: a biomechanical investigation. J Bone Joint Surg (Br), 2002, 84(5): 748-752.
|
15. |
Orr TE, Villars PA, Mitchell SL, et al. Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite. Biomaterials, 2001, 22(14): 1953-1959.
|
16. |
Boger A, Bohner M, Heini P, et al. Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J Biomed Mater Res B Appl Biomater, 2008, 86(2): 474-482.
|
17. |
Shi M, Kretlow JD, Spicer PP, et al. Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J Control Release, 2011, 152(1): 196-205.
|
18. |
López A, Hoess A, Thersleff T, et al. Low-modulus PMMA bone cement modified with castor oil. Biomed Mater Eng, 2011, 21(5-6): 323-332.
|
19. |
Shinzato S, Nakamura T, Kokubo T, et al. PMMA-based bioactive cement: effect of glass bead filler content and histological change with time. J Biomed Mater Res, 2002, 59(2): 225-232.
|
20. |
Hernández L, Parra J, Vázquez B, et al. Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Bioactivity and biocompatibility. J Biomed Mater Res B Appl Biomater, 2009, 88(1): 103-114.
|
21. |
Knabe C, Driessens FC, Planell JA, et al. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J Biomed Mater Res, 2000, 52(3): 498-508.
|
22. |
Shi Z, Neoh KG, Kang ET, et al. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials, 2006, 27(11): 2440-2449.
|
23. |
Hench LL. The story of Bioglass. J Mater Sci Mater Med, 2006, 17(11): 967-978.
|
24. |
Oonishi H, Hench LL, Wilson J, et al. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res, 1999, 44(1): 31-43.
|
25. |
Jayabalan P, Tan AR, Rahaman MN, et al. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study. Clin Orthop Relat Res, 2011, 469(10): 2754-2763.
|
26. |
Ishihara K, Arai H, Nakabayashi N. Adhesive bone cement containing hydroxyapatite particle as bone compatible filler. J Biomed Mater Res, 1992, 26(8): 937-945.
|
27. |
Barralet JE, Gaunt T, Wright AJ, et al. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J Biomed Mater Res, 2002, 63(1): 1-9.
|
28. |
Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp, 1971, 5(6): 117-141.
|