| 1. |
Calafat AM, Baker SE, Wong LY, et al. Novel exposure biomarkers of N, N-diethyl-m-toluamide (DEET): data from the 2007-2010 National Health and Nutrition Examination Survey. Environ Int, 2016(92/93): 398-404.
|
| 2. |
Chen-Hussey V, Behrens R, Logan JG. Assessment of methods used to determine the safety of the topical insect repellent N, N-diethyl-m-toluamide (DEET). Parasit Vectors, 2014, 7: 173.
|
| 3. |
Weeks JA, Guiney PD, Nikiforov AI. Assessment of the environmental fate and ecotoxicity of N, N-diethyl-m-toluamide (DEET). Integr Environ Assess Manag, 2012, 8(1): 120-134.
|
| 4. |
Zhao X, Li J, Liu Y, et al. A prospective cohort study of exposure to household pesticide with cardiovascular diseases mortality in older adults. J Hazard Mater, 2024, 471: 134316.
|
| 5. |
Swale DR, Bloomquist JR. Is DEET a dangerous neurotoxicant?. Pest Manag Sci, 2019, 75(8): 2068-2070.
|
| 6. |
Corbel V, Stankiewicz M, Pennetier C, et al. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biol, 2009, 7: 47.
|
| 7. |
Swale DR, Sun B, Tong F, et al. Neurotoxicity and mode of action of N, N-diethyl-meta-toluamide (DEET). PLoS One, 2014, 9(8): e103713.
|
| 8. |
Iadecola C, Duering M, Hachinski V, et al. Vascular cognitive impairment and dementia: JACC scientific expert panel. J Am Coll Cardiol, 2019, 73(25): 3326-3344.
|
| 9. |
Tian M, Kawaguchi R, Shen Y, et al. Deconstructing the intercellular interactome in vascular dementia with focal ischemia for therapeutic applications. Cell, 2025, 188(19): 5157-5174.e20.
|
| 10. |
Wolters FJ, Ikram MA. Epidemiology of vascular dementia. Arterioscler Thromb Vasc Biol, 2019, 39(8): 1542-1549.
|
| 11. |
Nihart AJ, Garcia MA, El Hayek E, et al. Bioaccumulation of microplastics in decedent human brains. Nat Med, 2025, 31(4): 1114-1119.
|
| 12. |
Yan Y, Maisenbacher M, Huang C, et al. Detoxification and age-related neurodegenerative diseases: correlation and therapeutic potential. Pharmacol Res, 2025, 218: 107849.
|
| 13. |
Leng Y, Zeng Y, Zhang Y, et al. Neurotoxic risks of long-term environmental exposure to pesticides: a review. Chem Biol Interact, 2025, 418: 111626.
|
| 14. |
Yan S, Wang J, Xu J, et al. Exposure to N, N-diethyl-m-toluamide and cardiovascular diseases in adults. Front Public Health, 2022, 10: 922005.
|
| 15. |
Xu Z, Wang A, Hu J, et al. Elucidating the mechanisms of environmental pollutant BPA inducing neurotoxicity through metabolomics and network toxicology strategy. Environ Pollut, 2025, 381: 126591.
|
| 16. |
Cheng M, Li M, Zhang Y, et al. Exploring the mechanism of PPCPs on human metabolic diseases based on network toxicology and molecular docking. Environ Int, 2025, 196: 109324.
|
| 17. |
Del Giudice G, Serra A, Pavel A, et al. A network toxicology approach for mechanistic modelling of nanomaterial hazard and adverse outcomes. Adv Sci (Weinh), 2024, 11(32): e2400389.
|
| 18. |
Li Y, Zhou T, Liu Z, et al. Air pollution and prostate cancer: unraveling the connection through network toxicology and machine learning. Ecotoxicol Environ Saf, 2025, 292: 117966.
|
| 19. |
Li NR, Zeng YX, Gu YF, et al. Aspartame increases the risk of liver cancer through CASP1 protein: a comprehensive network analysis insight. Ecotoxicol Environ Saf, 2025, 294: 118089.
|
| 20. |
Yang K, Zhou X, Wu K, et al. Multi-omics reveals the polyethylene terephthalate carcinogenicity: cancer progression and immune microenvironment. Ecotoxicol Environ Saf, 2025, 302: 118522.
|
| 21. |
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res, 2021, 49(D1): D605-D612.
|
| 22. |
Yang J, Zhong J, Du Y, et al. Bioinformatics and systems biology approaches to identify potential common pathogeneses for sarcopenia and osteoarthritis. Front Med (Lausanne), 2024, 11: 1380210.
|
| 23. |
Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci, 2019, 20(18): 4331.
|
| 24. |
Abdel-Rahman A, Dechkovskaia AM, Goldstein LB, et al. Neurological deficits induced by malathion, DEET, and permethrin, alone or in combination in adult rats. J Toxicol Environ Health A, 2004, 67(4): 331-356.
|
| 25. |
Abdel-Rahman A, Abou-Donia S, El-Masry E, et al. Stress and combined exposure to low doses of pyridostigmine bromide, DEET, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum. J Toxicol Environ Health A, 2004, 67(2): 163-192.
|
| 26. |
Michalovicz LT, Locker AR, Kelly KA, et al. Corticosterone and pyridostigmine/DEET exposure attenuate peripheral cytokine expression: supporting a dominant role for neuroinflammation in a mouse model of Gulf War Illness. Neurotoxicology, 2019, 70: 26-32.
|
| 27. |
Belarbi K, Jopson T, Tweedie D, et al. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation, 2012, 9: 23.
|
| 28. |
Li H, Zhang Z, Li H, et al. New insights into the roles of p53 in central nervous system diseases. Int J Neuropsychopharmacol, 2023, 26(7): 465-473.
|
| 29. |
Ham SW, Jeon HY, Jin X, et al. TP53 gain-of-function mutation promotes inflammation in glioblastoma. Cell Death Differ, 2019, 26(3): 409-425.
|
| 30. |
Wang F, Wang Q, Liu B, et al. The long noncoding RNA synage regulates synapse stability and neuronal function in the cerebellum. Cell Death Differ, 2021, 28(9): 2634-2650.
|
| 31. |
Lei W, Yiming S, Qiang P, et al. Unleashing the neurotherapeutic potential: the crucial role of miR-206-3p in facilitating Hsp90aa1-mediated central nervous system injuries during heat stroke. Mol Neurobiol, 2025, 62(2): 1433-1450.
|
| 32. |
Zhong J. RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction. Biol Chem, 2016, 397(3): 215-222.
|
| 33. |
Ryu HH, Kang M, Hwang KD, et al. Neuron type-specific expression of a mutant KRAS impairs hippocampal-dependent learning and memory. Sci Rep, 2020, 10(1): 17730.
|
| 34. |
Wu T, Jia L, Lei S, et al. Host HSPD1 translocation from mitochondria to the cytoplasm induced by Streptococcus suis serovar 2 enolase mediates apoptosis and loss of blood-brain barrier integrity. Cells, 2022, 11(13): 2071.
|