| 1. |
Chong A C, Miller F, Buxton M, et al. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng, 2007, 129(4): 487-493.
|
| 2. |
Bougherara H, Zdero R, Mahboob Z, et al. The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement. Proc Inst Mech Eng H, 2010, 224(10): 1209-1219.
|
| 3. |
Zdero R, Bougherara H, Dubov A, et al. The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs. Proc Inst Mech Eng H, 2010, 224(7): 831-840.
|
| 4. |
Ebrahimi H, Rabinovich M, Vuleta V, et al. Biomechanical properties of an intact, injured, repaired, and healed femur: an experimental and computational study. J Mech Behav Biomed Mater, 2012, 16: 121-135.
|
| 5. |
Goshulak P, Samiezadeh S, Aziz M S, et al. The biomechanical effect of anteversion and modular neck offset on stress shielding for short-stem versus conventional long-stem hip implants. Med Eng Phys, 2016, 38(3): 232-240.
|
| 6. |
Zdero R, Brzozowski P, Schemitsch E H. Biomechanical properties of artificial bones made by Sawbones: a review. Med Eng Phys, 2023, 118: 104017.
|
| 7. |
Fan X, Chen Z, Jin Z, et al. Parametric study of patient-specific femoral locking plates based on a combined musculoskeletal multibody dynamics and finite element modeling. Proc Inst Mech Eng H, 2018, 232(2): 114-126.
|
| 8. |
Grujicic M, Arakere G, Xie X, et al. Design-optimization and material selection for a femoral-fracture fixation-plate implant. Mater Design, 2010, 31(7): 3463-3473.
|
| 9. |
M?rdian S, Schaser K D, Duda G N, et al. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech, 2015, 30(4): 391-396.
|
| 10. |
Duda G N, Heller M, Albinger J, et al. Influence of muscle forces on femoral strain distribution. J Biomech, 1998, 31(9): 841-846.
|
| 11. |
Speirs A D, Heller M O, Duda G N, et al. Physiologically based boundary conditions in finite element modelling. J Biomech, 2007, 40(10): 2318-2323.
|
| 12. |
McLachlin S, Kreder H, Ng M, et al. Proximal screw configuration alters peak plate strain without changing construct stiffness in comminuted supracondylar femur fractures. J Orthop Trauma, 2017, 31(12): e418-e424.
|
| 13. |
Goodnough L H, Salazar B P, Chen M J, et al. Supplemental medial small fragment fixation adds stability to distal femur fixation: a biomechanical study. Injury, 2021, 52(7): 1670-1672.
|
| 14. |
Gehweiler D, Styger U, Gueorguiev B, et al. Local bone quality measure and construct failure prediction: a biomechanical study on distal femur fractures. Arch Orthop Traum Surg, 2022, 142(6): 1055-1061.
|
| 15. |
Alexander J, Morris R P, Kaimrajh D, et al. Biomechanical evaluation of periprosthetic refractures following distal femur locking plate fixation. Injury, 2015, 46(12): 2368-2373.
|
| 16. |
Cui S, Bledsoe J G, Israel H, et al. Locked plating of comminuted distal femur fractures: does unlocked screw placement affect stability and failure?. J Orthop Trauma, 2014, 28(2): 90-96.
|
| 17. |
Schmidt U, Penzkofer R, Bachmaier S, et al. Implant material and design alter construct stiffness in distal femur locking plate fixation: a pilot study. Clin Orthop Relat Res, 2013, 471(9): 2808-2814.
|
| 18. |
Heller M O, Bergmann G, Kassi J P, et al. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech, 2005, 38(5): 1155-1163.
|
| 19. |
Chen X, Myers C A, Clary C W, et al. Impact of bone health on the mechanics of plate fixation for Vancouver B1 periprosthetic femoral fractures. Clin Biomech, 2022, 100: 105801.
|
| 20. |
Johnson J E, Brouillette M J, Miller B J, et al. Finite element model-computed mechanical behavior of femurs with metastatic disease varies between physiologic and idealized loading simulations. Biomed Eng Comput Biol, 2023, 14: 11795972231166240.
|
| 21. |
Wieding J, Souffrant R, Mittelmeier W, et al. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions. Med Eng Phys, 2013, 35(4): 422-432.
|
| 22. |
Sarwar A, Gee A, Bougherara H, et al. Biomechanical optimization of the far cortical locking technique for early healing of distal femur fractures. Med Eng Phys, 2021, 89: 63-72.
|
| 23. |
Inacio J V, Schwarzenberg P, Yoon R S, et al. Boundary conditions matter-impact of test setup on inferred construct mechanics in plated distal femur osteotomies. J Biomech Eng, 2022, 144(8): 081009.
|
| 24. |
Samiezadeh A, McLachlin S, Ng M, et al. Modeling attachment and compressive loading of locking and non-locking plate fixation: a finite element investigation of a supracondylar femur fracture model. Comput Method Biomech Biomed Engin, 2022, 25(14): 1629-1636.
|
| 25. |
Chao C K, Chen Y L, Wu J M, et al. Contradictory working length effects in locked plating of the distal and middle femoral fractures a biomechanical study. Clin Biomech, 2020, 80: 105198.
|
| 26. |
Inacio J V, Schwarzenberg P, Kantzos A, et al. Rethinking the 10% strain rule in fracture healing: a distal femur fracture case series. J Orthop Res, 2023, 41(5): 1049-1059.
|
| 27. |
Higgins T F, Pittman G, Hines J, et al. Biomechanical analysis of distal femur fracture fixation: fixed-angle screw-plate construct versus condylar blade plate. J Orthop Trauma, 2007, 21(1): 43-46.
|
| 28. |
W?hnert D, Hoffmeier K L, von Oldenburg G, et al. Internal fixation of type-C distal femoral fractures in osteoporotic bone. J Bone Joint Surg Am, 2010, 92(6): 1442-1452.
|
| 29. |
Zlowodzki M, Williamson S, Cole P A, et al. Biomechanical evaluation of the less invasive stabilization system, angled blade plate, and retrograde intramedullary nail for the internal fixation of distal femur fractures. J Orthop Trauma, 2004, 18(8): 494-502.
|
| 30. |
Fregly B J, Besier T F, Lloyd D G, et al. Grand challenge competition to predict in vivo knee loads. J Orthop Res, 2012, 30(4): 503-513.
|
| 31. |
Levadnyi I, Awrejcewicz J, Zhang Y, et al. Comparison of femur strain under different loading scenarios: experimental testing. Proc Inst Mech Eng H, 2020, 235(1): 17-27.
|
| 32. |
Elkins J, Marsh J L, Lujan T, et al. Motion predicts clinical callus formation construct-specific finite element analysis of supracondylar femoral fractures. J Bone Joint Surg Am, 2016, 98(4): 276-284.
|
| 33. |
Henschel J, Tsai S, Fitzpatrick D C, et al. Comparison of 4 methods for dynamization of locking plates: differences in the amount and type of fracture motion. J Orthop Trauma, 2017, 31(10): 531-537.
|
| 34. |
Marti A, Fankhauser C, Frenk A, et al. Biomechanical evaluation of the less invasive stabilization system for the internal fixation of distal femur fractures. J Orthop Trauma, 2001, 15(7): 482-487.
|
| 35. |
Dickinson A S, Taylor A C, Ozturk H, et al. Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. J Biomech Eng, 2011, 133(1): 014504.
|
| 36. |
Ghosh R, Gupta S, Dickinson A, et al. Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation. J Biomech Eng, 2012, 134(8): 081003.
|
| 37. |
Taylor M E, Tanner K E, Freeman M A, et al. Stress and strain distribution within the intact femur: Compression or bending?. Med Eng Phys, 1996, 18(2): 122-131.
|
| 38. |
Thompson J C. 奈特簡明骨科學彩色圖譜/邱貴興等主譯. 北京: 人民衛生出版社, 2007: 170.
|
| 39. |
MacLeod A R, Rose H, Gill H S. A validated open-source multisolver fourth-generation composite femur model. J Biomech Eng, 2016, 138(12): 9.
|