| 1. |
Becker R. Total knee arthroplasty 2010. Knee Surg Sports Traumatol Arthrosc, 2010, 18(7): 851-852.
|
| 2. |
Nam D, Nunley R M, Barrack R L. Patient dissatisfaction following total knee replacement: a growing concern?. Bone Joint J, 2014, 96-B(11 Supple A): 96-100.
|
| 3. |
Oussedik S, Abdel M P, Victor J, et al. Alignment in total knee arthroplasty. Bone Joint J, 2020, 102-B(3): 276-279.
|
| 4. |
Matassi F, Pettinari F, Frasconà F, et al. Coronal alignment in total knee arthroplasty: a review. J Orthop Traumatol, 2023, 24(1): 24-32.
|
| 5. |
Jaffe W L, Dundon J M, Camus T. Alignment and balance methods in total knee arthroplasty. J Am Acad Orthop Surg, 2018, 26(20): 709-716.
|
| 6. |
Jenny J Y, Baldairon F. The coronal alignment technique impacts deviation from native knee anatomy after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2023, 31(4): 1427-1432.
|
| 7. |
Karasavvidis T, Pagan Moldenhauer C A, Haddad F S, et al. Current concepts in alignment in total knee arthroplasty. J Arthroplasty, 2023, 38(7 Suppl 2): S29-S37.
|
| 8. |
Elbuluk A M, Jerabek S A, Suhardi V J, et al. Head-to-head comparison of kinematic alignment versus mechanical alignment for total knee arthroplasty. J Arthroplasty, 2022, 37(8S): S849-S851.
|
| 9. |
Rivière C, Villet L, Jeremic D, et al. What you need to know about kinematic alignment for total knee arthroplasty. Orthop Traumatol Surg Res, 2021, 107(1S): 102773.
|
| 10. |
Vendittoli P A, Martinov S, Blakeney W G. Restricted kinematic alignment, the fundamentals, and clinical applications. Front Surg, 2021, 8: 697020.
|
| 11. |
Deckey D G, Rosenow C S, Verhey J T, et al. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques. Bone Joint J, 2021, 103-B(6 Supple A): 74-80.
|
| 12. |
Choi B S, Kim S E, Yang M, et al. Functional alignment with robotic-arm assisted total knee arthroplasty demonstrated better patient-reported outcomes than mechanical alignment with manual total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2023, 31(3): 1072-1080,1081.
|
| 13. |
Sun L, Han Y, Jing Z, et al. Finite element analysis of the effect of tibial osteotomy on the stress of polyethylene liner in total knee arthroplasty. J Orthop Surg (Hong Kong), 2024, 32(2): 10225536241251926.
|
| 14. |
Dagneaux L, Canovas F, Jourdan F. Finite element analysis in the optimization of posterior-stabilized total knee arthroplasty. Orthop Traumatol Surg Res, 2024, 110(1S): 103765.
|
| 15. |
Luan Y, Zhang M, Dong X, et al. Comprehensive impact of multiplanar malalignment on prosthetic mechanics under gait loading after total knee arthroplasty–A finite element analysis. Orthop Surg, 2025, 17(7): 2112-2120.
|
| 16. |
MacDessi S J, Griffiths-Jones W, Harris I A, et al. Coronal plane alignment of the knee (CPAK) classification. Bone Joint J, 2021, 103-B(2): 329-337.
|
| 17. |
Fang D M, Ritter M A, Davis K E. Coronal alignment in total knee arthroplasty: just how important is it?. J Arthroplasty, 2009, 24(6 Suppl): 39-43.
|
| 18. |
Cai L, Zhang Y, Zheng W, et al. A novel percutaneous crossed screws fixation in treatment of Day type II crescent fracture-dislocation: A finite element analysis. J Orthop Translat, 2019, 20: 37-46.
|
| 19. |
Yu Y, Li W, Yu L, et al. Population-based design and 3D finite element analysis of transforaminal thoracic interbody fusion cages. J Orthop Translat, 2020, 21: 35-40.
|
| 20. |
Hume D R, Navacchia A, Rullkoetter P J, et al. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling. J Biomech, 2019, 84: 153-160.
|
| 21. |
Sun H, Zhang H, Wang T, et al. Biomechanical and finite-element analysis of femoral pin-site fractures following navigation-assisted total knee arthroplasty. J Bone Joint Surg Am, 2022, 104(19): 1738-1749.
|
| 22. |
Shu L, Yamamoto K, Yao J, et al. A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement. J Biomech, 2018, 77: 146-154.
|
| 23. |
Chen Z, Gao Y, Chen S, et al. Biomechanics and wear comparison between mechanical and kinematic alignments in total knee arthroplasty. Proc Inst Mech Eng H, 2018, 232(12): 1209-1218.
|
| 24. |
Amirouche F, Choi K W, Goldstein W M, et al. Finite element analysis of resurfacing depth and obliquity on patella stress and stability in TKA. J Arthroplasty, 2013, 28(6): 978-984.
|
| 25. |
Chen Z, Wang L, Liu Y, et al. Effect of component mal-rotation on knee loading in total knee arthroplasty using multi-body dynamics modeling under a simulated walking gait. J Orthop Res, 2015, 33(9): 1287-1296.
|
| 26. |
Galas A, Banci L, Innocenti B. The effects of different femoral component materials on bone and implant response in total knee arthroplasty: A finite element analysis. Materials (Basel), 2023, 16(16): 5605.
|
| 27. |
Apostolopoulos V, Bohá? P, Marcián P, et al. Biomechanical comparison of all-polyethylene total knee replacement and its metal-backed equivalent on periprosthetic tibia using the finite element method. J Orthop Surg Res, 2024, 19(1): 153-165.
|
| 28. |
Kipp K, Kim H, Wolf W I. Muscle forces during the squat, split squat, and step-up across a range of external loads in college-aged men. J Strength Cond Res, 2022, 36(2): 314-323.
|
| 29. |
Sj?berg M, Berg H E, Norrbrand L, et al. Comparison of joint and muscle biomechanics in maximal flywheel squat and leg press. Front Sports Act Living, 2021, 3: 686335.
|
| 30. |
Zhang E, Wand X, Han Y. Research status of biomedical porous Ti and its alloy in China. Acta Metall Sin, 2017, 53(12): 1555-1567.
|
| 31. |
Brihault J, Navacchia A, Pianigiani S, et al. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2016, 24(8): 2550-2559.
|
| 32. |
Breda S J, van der Vlist A, de Vos R J, et al. The association between patellar ligament stiffness measured with shear-wave elastography and patellar tendinopathy-a case-control study. Eur Radiol, 2020, 30(11): 5942-5951.
|
| 33. |
Hashemi J, Chandrashekar N, Slauterbeck J. The mechanical properties of the human patellar ligament are correlated to its mass density and are independent of sex. Clin Biomech (Bristol, Avon), 2005, 20(6): 645-652.
|
| 34. |
Chen Z, Zhang Z, Wang L, et al. Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty. Med Eng Phys, 2016, 38(8): 708-716.
|
| 35. |
Innocenti B, Bellemans J, Catani F. Deviations from optimal alignment in TKA: Is there a biomechanical difference between femoral or tibial component alignment?. J Arthroplasty, 2016, 31(1): 295-301.
|
| 36. |
Kang K T, Son J, Kwon S K, et al. Finite element analysis for the biomechanical effect of tibial insert materials in total knee arthroplasty. Compos Struct, 2018, 201: 141-150.
|
| 37. |
Halder A, Kutzner I, Graichen F, et al. Influence of limb alignment on mediolateral loading in total knee replacement: in vivo measurements in five patients. J Bone Joint Surg Am, 2012, 94(11): 1023-1029.
|
| 38. |
Mou Z, Dong W, Zhang Z, et al. Optimization of parameters for femoral component implantation during TKA using finite element analysis and orthogonal array testing. J Orthop Surg Res, 2018, 13(1): 179-191.
|
| 39. |
Arab A Z E, Merdji A, Benaissa A, et al. Finite-element analysis of a lateral femoro-tibial impact on the total knee arthroplasty. Comput Methods Programs Biomed, 2020, 192: 105446.
|
| 40. |
Loi I, Stanev D, Moustakas K. Total knee replacement: Subject-specific modeling, finite element analysis, and evaluation of dynamic activities. Front Bioeng Biotechnol, 2021, 9: 648356.
|
| 41. |
D'Lima D D, Chen P C, Colwell C W Jr. Polyethylene contact stresses, articular congruity, and knee alignment. Clin Orthop Relat Res, 2001(392): 232-238.
|
| 42. |
Ali A A, Mannen E M, Rullkoetter P J, et al. Validated computational framework for evaluation of in vivo knee mechanics. J Biomech Eng, 2020, 142(8): 081003.
|
| 43. |
Wang L, Wang C J. Preliminary study of a customised total knee implant with musculoskeletal and dynamic squatting simulation. Proc Inst Mech Eng H, 2019, 233(10): 1010-1023.
|