| 1. |
Wei D, Ahmad S, Huo J, et al. SLIR: synthesis, localization, inpainting, and registration for image-guided thermal ablation of liver tumors. Med Image Anal, 2020, 65: 101763.
|
| 2. |
Saad F, Frysch R, Saalfeld S, et al. Deformable 3D/3D CT-to-digital-tomosynthesis image registration in image-guided bronchoscopy interventions. Comput Biol Med, 2024, 171: 108199.
|
| 3. |
Qiao M, Wang Y, Guo Y, et al. Temporally coherent cardiac motion tracking from cine MRI: traditional registration method and modern CNN method. Med Phys, 2020, 47(9): 4189-4198.
|
| 4. |
Lu J, Jin R, Wang M, et al. A bidirectional registration neural network for cardiac motion tracking using cine MRI images. Comput Biol Med, 2023, 160: 107001.
|
| 5. |
Bitarafan A, Nikdan M, Baghshah M S. 3D image segmentation with sparse annotation by self-training and internal registration. IEEE J Biomed Health Inform, 2020, 25(7): 2665-2672.
|
| 6. |
Beekman C, van Beek S, Stam J, et al. Improving predictive CTV segmentation on CT and CBCT for cervical cancer by diffeomorphic registration of a prior. Med Phys, 2022, 49(3): 1701-1711.
|
| 7. |
Jiang J, Hong J, Tringale K, et al. Progressively refined deep joint registration segmentation (ProRSeg) of gastrointestinal organs at risk: application to MRI and cone‐beam CT. Med Phys, 2023, 50(8): 4758-4774.
|
| 8. |
Nenoff L, Ribeiro C O, Matter M, et al. Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother Oncol, 2020, 147: 178-185.
|
| 9. |
Wang B, Wang D Q, Lin M S, et al. Accumulation of the delivered dose based on cone-beam CT and deformable image registration for non-small cell lung cancer treated with hypofractionated radiotherapy. BMC Cancer, 2020, 20: 1112.
|
| 10. |
Bosma L S, Zachiu C, Denis de Senneville B, et al. Technical note: intensity-based quality assurance criteria for deformable image registration in image-guided radiotherapy. Med Phys, 2023, 50(9): 5715-5722.
|
| 11. |
Chen X, Ravikumar N, Xia Y, et al. Shape registration with learned deformations for 3D shape reconstruction from sparse and incomplete point clouds. Med Image Anal, 2021, 74: 102228.
|
| 12. |
Casamitjana A, Lorenzi M, Ferraris S, et al. Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: application to the Allen human brain atlas. Med Image Anal, 2022, 75: 102265.
|
| 13. |
Balakrishnan G, Zhao A, Sabuncu M R, et al. Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging, 2019, 38(8): 1788-1800.
|
| 14. |
Chen J, He Y, Frey E C, et al. Vit-V-Net: vision transformer for unsupervised volumetric medical image registration. arXiv preprint, 2021, arXiv: 2104.06468.
|
| 15. |
Chen J, Frey E C, He Y, et al. Transmorph: transformer for unsupervised medical image registration. Med Image Anal, 2022, 82: 102615.
|
| 16. |
Chen J, Liu Y, Wei S, et al. A survey on deep learning in medical image registration: new technologies, uncertainty, evaluation metrics, and beyond. Med Image Anal, 2024: 103385.
|
| 17. |
Luo W, Li Y, Urtasun R, et al. Understanding the effective receptive field in deep convolutional neural networks//Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS), Red Hook: Curran Associates Inc, 2016: 4905-4913.
|
| 18. |
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks//Computer Vision-ECCV 2014: 13th European Conference, Zurich: Springer International Publishing, 2014: 818-833.
|
| 19. |
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv preprint, 2015, arXiv: 1511.07122.
|
| 20. |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu: IEEE, 2017: 2881-2890.
|
| 21. |
Richter M L, Pal C. Receptive field refinement for convolutional neural networks reliably improves predictive performance. arXiv preprint, 2022, arXiv: 2211.14487.
|
| 22. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need//Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), Red Hook: Curran Associates Inc, 2017: 6000-6010.
|
| 23. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint, 2020, arXiv: 2010.11929.
|
| 24. |
Li S, Sui X, Luo X, et al. Medical image segmentation using squeeze-and-expansion transformers. arXiv preprint, 2021, arXiv: 2105.09511.
|
| 25. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal: IEEE, 2021: 10012-10022.
|
| 26. |
Darzi F, Bocklitz T. A review of medical image registration for different modalities. Bioengineering, 2024, 11(8): 786.
|
| 27. |
Avants B B, Epstein C L, Grossman M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal, 2008, 12(1): 26-41.
|
| 28. |
University College London. Information extraction from images dataset. (2022-01-29) [2023-10-25]. https://brain-development.org/ixi-dataset.
|
| 29. |
Marcus D S, Wang T H, Parker J, et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci, 2007, 19(9): 1498-1507.
|
| 30. |
Hering A, Hansen L, Mok T C W, et al. Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Trans Med Imaging, 2023, 42(3): 697-712.
|
| 31. |
Avants B B, Tustison N, Song G. Advanced normalization tools (ANTS). Insight J, 2009, 2(365): 1-35.
|
| 32. |
Dice L R. Measures of the amount of ecologic association between species. Ecology, 1945, 26(3): 297-302.
|
| 33. |
Beg M F, Miller M I, Trouvé A, et al. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis, 2005, 61: 139-157.
|
| 34. |
Wang W, Xie E, Li X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal: IEEE, 2021: 568-578.
|
| 35. |
Chen Z, Zheng Y, Gee J C. TransMatch: a Transformer-based multilevel dual-stream feature matching network for unsupervised deformable image registration. IEEE Trans Med Imaging, 2024, 43(1): 15-27.
|
| 36. |
Li Z, Li X, Fan J, et al. Non-iterative pyramid network for unsupervised deformable medical image registration//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul: IEEE, 2024: 1956-1960.
|