| 1. |
World Health Organization. Cardiovascular diseases (2021-06-11) [2025-09-02]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
|
| 2. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//Medical Image Computing and Computer-Assisted Intervention (MICCAI-2015) . Munich: MICCAI, 2015: 234-241.
|
| 3. |
Azad R, Aghdam E K, Rauland A, et al. Medical image segmentation review: the success of U-net. IEEE Trans Pattern Anal Mach Intell, 2024, 46(12): 10076-10095.
|
| 4. |
Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. Unet++: a nested U-net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, 11045: 3-11.
|
| 5. |
?i?ek ?, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation//Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016). Athens: MICCAI, 2016: 424-436.
|
| 6. |
Guo C, Szemenyei M, Yi Y, et al. SA-UNet: spatial attention u-net for retinal vessel segmentation//2020 25th International Conference on Pattern Recognition (ICPR). Milan: IAPR, 2021: 1236-1242.
|
| 7. |
Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint, 2021, arXiv: 2102.04306.
|
| 8. |
Moradi S, Oghli M G, Alizadehasl A, et al. MFP-UNet: a novel deep learning based approach for left ventricle segmentation in echocardiography. Physica Medica, 2019, 67: 58-69.
|
| 9. |
Wang Z, Blaschko M B. MRF-UNets: searching UNet with Markov random fields//Machine Learning and Knowledge Discovery in Databases, Turin: ECML, 2023: 599-614.
|
| 10. |
Le N, Le T, Yamazaki K, et al. Offset curves loss for imbalanced problem in medical segmentation//2020 25th International Conference on Pattern Recognition (ICPR), Milan: IAPR, 2021: 9189-9195.
|
| 11. |
Nasalwai N, Punn N S, Sonbhadra S K, et al. Addressing the class imbalance problem in medical image segmentation via accelerated Tversky loss function//Advances in Knowledge Discovery and Data Mining, Virtual: PAKDD, 2021: 390-402.
|
| 12. |
Salehi S S M, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks//Machine Learning in Medical Imaging, Quebec: MLMI, 2017: 379-387.
|
| 13. |
Basak H, Ghosal S, Sarkar R. Addressing class imbalance in semi-supervised image segmentation: a study on cardiac MRI//Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Singapore: MICCAI, 2022: 224-233.
|
| 14. |
Mao A, Mohri M, Zhong Y. Cross-entropy loss functions: theoretical analysis and applications. arXiv preprint, 2023. arXiv: 2304.07288.
|
| 15. |
Lin T Y, Goyal P, Girshick R B, et al. Focal loss for dense object detection//2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE, 2017: 2999-3007.
|
| 16. |
Abraham N, Khan N M. A novel focal Tversky loss function with improved attention U-net for lesion segmentation//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice: IEEE, 2018: 683-687.
|
| 17. |
Wang P, Chung A C S. Focal Dice loss and image dilation for brain tumor segmentation//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2018), Granada: MICCAI, 2018: 119-127.
|
| 18. |
Yeung M, Sala E, Sch?nlieb C B, et al. Unified focal loss: generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized Medical Imaging and Graphics, 2022, 95: 102026.
|
| 19. |
Stanford University Stanford AIMI. Coca-coronary calcium and chest CT’s (2021-07-31) [2025-09-02]. https://stanfordaimi.azurewebsites.net/datasets/e8ca74dc-8dd4-4340-815a-60b41f6cb2aa,2021-07-31/2024-08-05.
|
| 20. |
Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-Net. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
|
| 21. |
Tversky A. Features of similarity. Psychological Review, 1977, 84(4): 327-352.
|
| 22. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: learning where to look for the pancreas. arXiv preprint, 2018, arXiv: 1804.03999.
|
| 23. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2015: 770-778.
|
| 24. |
Kazemzadeh S, Singh M, Ashouri B, et al. Prediction of coronary artery disease via calcium scoring of chest CTs. Stanford University, (2022-01-24) [2025-09-02]. http://cs230.stanford.edu/projects_fall_2021/reports/103167584.pdf.
|