| 1. |
Clerc M. Brain computer interfaces, principles and practise. Biomed Eng Online, 2013, 12: 22.
|
| 2. |
Xu S, Zhu L, Kong W, et al. A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network. Cogn Neurodyn, 2022, 16(2): 379-389.
|
| 3. |
Martens S M, Leiva J M. A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller. J Neural Eng, 2010, 7(2): 26003.
|
| 4. |
Saravanakumar D, Reddy M R. A high performance hybrid SSVEP based BCI speller system. Advanced Engineering Informatics, 2019, 42: 100994.
|
| 5. |
Schl?gl A, Lee F, Bischof H, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng, 2005, 2(4): L14.
|
| 6. |
Rong Yuying, Wu Xiaojun, Zhang Yumei. Classification of motor imagery electroencephalography signals using continuous small convolutional neural network. Int J Imaging Syst Technol, 2020, 30(3): 653-659.
|
| 7. |
田貴鑫, 陳俊杰, 丁鵬, 等. 腦機接口中運動想象的執行與能力的評估和提高方法. 生物醫學工程學雜志, 2021, 38(3): 434-446.
|
| 8. |
Pfurtscheller G, Neuper C, Ramoser H, et al. Visually guided motor imagery activates sensorimotor areas in humans. Neurosci Lett, 1999, 269(3): 153-156.
|
| 9. |
Pfurtscheller G, Neuper C, Schl?gl A, et al. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng, 1998, 6(3): 316-325.
|
| 10. |
Aggarwal S, Chugh N. Signal processing techniques for motor imagery brain computer interface: a review. Array, 2019, 1-2: 100003.
|
| 11. |
Amin H U, Malik A S, Ahmad R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med, 2015, 38(1): 139-149.
|
| 12. |
Subasi A. Selection of optimal AR spectral estimation method for EEG signals using Cramer-Rao bound. Comput Biol Med, 2007, 37(2): 183-194.
|
| 13. |
Ang K K, Chin Z Y, Wang C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci, 2012, 6: 39.
|
| 14. |
Khan M E, Dutt D N. An expectation-maximization algorithm based Kalman smoother approach for event-related desynchronization (ERD) estimation from EEG. IEEE Trans Biol Med Eng, 2007, 54(7): 1191-1198.
|
| 15. |
孟明, 尹旭, 高云園, 等. 運動想象腦電的塊選擇共空間模式特征提取. 控制理論與應用, 2021, 38(3): 301-308.
|
| 16. |
Huang Y, Jin J, Xu R, et al. Multi-view optimization of time-frequency common spatial patterns for brain-computer interfaces. J Neurosci Methods, 2022, 365: 109378.
|
| 17. |
孫會文, 伏云發, 熊馨, 等. 基于HHT運動想象腦電模式識別研究. 自動化學報, 2015, 41(9): 1686-1692.
|
| 18. |
谷學靜, 位占鋒, 劉海望, 等. 基于小波包和串并行CNN的腦電信號分類. 微電子學與計算機, 2021, 38(6): 60-65.
|
| 19. |
唐賢倫, 李偉, 馬偉昌, 等. 基于條件經驗模式分解和串并行CNN的腦電信號識別. 電子與信息學報, 2020, 42(4): 1041-1048.
|
| 20. |
Dose H, M?ller J S, Iversen H K, et al. An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Systems with Applications, 2018, 114: 532-542.
|
| 21. |
張瑋, 趙永虹, 邱桃榮. 基于注意力機制和深度學習的運動想象腦電信號分類方法. 南京大學學報(自然科學), 2022, 58(1): 29-37.
|
| 22. |
Broniec A. The FNS-based analysis of precursors and cross-correlations in EEG signal related to an imaginary motor task. Biomedical Signal Processing and Control, 2021, 64: 102315.
|
| 23. |
Tangermann M, Muller K R, Aertsen A, et al. Review of the BCI competition IV. Front Neurosci, 2012, 6: 55.
|
| 24. |
Blanco-Diaz C F, Antelis J M, Ruiz-Olaya A F. Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks. J Neurosci Methods, 2022, 371: 109495.
|
| 25. |
Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell, 2005, 27(8): 1226-1238.
|
| 26. |
郜東瑞, 周暉, 馮李逍, 等. 基于特征融合和粒子群優化算法的運動想象腦電信號識別方法. 電子科技大學學報, 2021, 50(3): 467-475.
|
| 27. |
Sch?lkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization, and beyond. IEEE Trans Neural Net, 2005, 16(3): 781.
|
| 28. |
Brabanter K D, Karsmakers P, Ojeda F, et al. LS-SVMlab Toolbox User’s Guide version 1.8. ESAT-SISTA Technical Report, 2011: 10-146.
|
| 29. |
Tang Xianlun, Zhang Na, Zhou Jialin, et al. Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition. Neurocomputing, 2017, 234: 1-10.
|
| 30. |
Thomas K P, Guan C, Lau C T, et al. A new discriminative common spatial pattern method for motor imagery brain computer interfaces. IEEE Trans Biomed Eng, 2009, 56: 2730-2733.
|
| 31. |
Yang J, Gao S, Shen T. A two-branch CNN fusing temporal and frequency features for motor imagery EEG decoding. Entropy, 2022, 24(3): 376.
|
| 32. |
Zhao H, Zheng Q, Ma K, et al. Deep representation-based domain adaptation for nonstationary EEG classification. IEEE Trans Neural Netw Learn Syst, 2021, 32(2): 535-545.
|