- 1. Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- 2. Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease;
- 3. Xiangxi Tujia and Miao Autonomous Prefecture People’s Hospital, Jishou 416000, China;
Research on vitreous substitutes has advanced from conventional gases and silicone oils to third-generation biomimetic hydrogels. While existing substitutes provide short-term retinal tamponade, they typically require strict postoperative positioning and carry risks of cataract formation, ocular hypertension, and silicone oil emulsification. These materials therefore fall short of meeting the essential requirements for long-term tissue support, matched physicochemical properties, and high biocompatibility simultaneously. Recently, polymer-based hydrogels have gained prominence as ideal candidates owing to their high water content, optical transparency, adjustable viscoelasticity, and favorable biocompatibility. They have diversified into several forms, including uncrosslinked solutions, preformed hydrogels systems, and in-situ crosslinked systems. Biopolymer hydrogels, such as those derived from hyaluronic acid, collagen, or alginate, demonstrate high safety but often exhibit inadequate mechanical strength and poor stability in vivo. Synthetic polymer hydrogels, including polyethylene glycol, polyvinyl alcohol, and polyvinylpyrrolidone, allow tunable properties yet raise concerns regarding monomer toxicity and degradation-related safety. Future research is shifting from simple material replacement toward functional reconstruction and intelligent regulation. Increasing efforts aim to develop smart hydrogels capable of sustained drug release and cell encapsulation, alongside advanced strategies employing biodegradable scaffolds to promote native vitreous regeneration, with the ultimate goal of achieving full functional restoration.
Copyright ? the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
| 1. | Qu S, Tang Y, Ning Z, et al. Desired properties of polymeric hydrogel vitreous substitute[J/OL]. Biomed Pharmacother, 2024, 172: 116154[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38306844/. DOI: 10.1016/j.biopha.2024.116154. |
| 2. | Boneva SK, Wolf J, Rosmus DD, et al. transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population[J/OL]. Front Immunol, 2020, 11: 567274[2020-09-11]. https://pubmed.ncbi.nlm.nih.gov/33042148/. DOI: 10.3389/fimmu.2020.567274. |
| 3. | Ankamah E, Sebag J, Ng E, et al. Vitreous antioxidants, degeneration, and vitreo-retinopathy: exploring the links[J/OL]. Antioxidants (Basel, Switzerland), 2019, 9(1): 7[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31861871/. DOI: 10.3390/antiox9010007. |
| 4. | Tomita Y, Cagnone G, Fu Z, et al. Vitreous metabolomics profiling of proliferative diabetic retinopathy[J]. Diabetologia, 2021, 64(1): 70-82. DOI: 10.1007/s00125-020-05309-y. |
| 5. | Lin Q, Lim JYC, Xue K, et al. Polymeric hydrogels as a vitreous replacement strategy in the eye[J/OL]. Biomaterials, 2021, 268: 120547[2020-11-24]. https://pubmed.ncbi.nlm.nih.gov/33307366/. DOI: 10.1016/j.biomaterials.2020.120547. |
| 6. | Schulz A, Januschowski K, Szurman P. Novel vitreous substitutes: the next frontier in vitreoretinal surgery[J]. Curr Opin Ophthalmol, 2021, 32(3): 288-293. DOI: 10.1097/ICU.0000000000000745. |
| 7. | Chen Y, Kearns VR, Zhou L, et al. Silicone oil in vitreoretinal surgery: indications, complications, new developments and alternative long-term tamponade agents[J]. Acta Ophthalmologica, 2021, 99(3): 240-250. DOI: 10.1111/aos.14604. |
| 8. | Mondelo-García C, Bandín-Vilar E, García-Quintanilla L, et al. Current situation and challenges in vitreous substitutes[J/OL]. Macromol Biosci, 2021, 21(8): e2100066[2021-05-13]. https://pubmed.ncbi.nlm.nih.gov/33987966/. DOI: 10.1002/mabi.202100066. |
| 9. | Cai Y, Tan Y, Cao J, et al. Dual-crosslinked betaine-based amphiphilic hydrogel as a promising vitreous substitute: anti-adhesion, anti-fouling, and anti-cell proliferation[J/OL]. Adv Sci (Weinh), 2025: e13455[2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/40586226/. DOI: 10.1002/advs.202413455. |
| 10. | Naik K, du Toit L C, Ally N, et al. In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye[J]. Drug Deliv Transl Res, 2024, 14(10): 2668-2694. DOI: 10.1007/s13346-024-01566-1. |
| 11. | Schulz A, Keskar M, Swindle-Reilly KE, et al. Replacing the vitreous body with hydrogels: rationale and strategies[J/OL]. Prog Retin Eye Res, 2025, 108: 101389[2025-07-09]. https://pubmed.ncbi.nlm.nih.gov/40645475/. DOI: 10.1016/j.preteyeres.2025.101389. |
| 12. | 曾百卉, 王倩, 韓寧, 等. 折疊式人工玻璃體球囊研究與應用的新進展[J]. 中華眼科醫學雜志(電子版), 2021, 11(2): 104-108. DOI: 10.3877/cma.j.issn.2095-2007.2021.02.008.Zeng BH, Wang Q, Han N, et al. New progress in research and application of foldable artificial vitreous balloon[J]. Chin J Ophthalmol, 2021, 11(2): 104-108. DOI: 10.3877/cma.j.issn.2095-2007.2021.02.008. |
| 13. | Cai Y, Xiang Y, Dong H, et al. Injectable self-assembling peptide hydrogel as a promising vitreous substitute[J]. J Control Release, 2024, 376: 402-412. DOI: 10.1016/j.jconrel.2024.10.016. |
| 14. | Boneva SK, Wolf J, Jung M, et al. The multifaceted role of vitreous hyalocytes: Orchestrating inflammation, angiomodulation and erythrophagocytosis in proliferative diabetic retinopathy[J]. J Neuroinflammation, 2024, 21(1): 1-16. DOI: 10.1186/s12974-024-03291-5. |
| 15. | Su X, Tan M J, Li Z, et al. Recent progress in using biomaterials as vitreous substitutes[J]. Biomacromolecules, 2015, 16(10): 3093-3102. DOI: 10.1021/acs.biomac.5b01091. |
| 16. | Hammer M, Herth J, Muuss M, et al. Forward light scattering of first to third generation vitreous body replacement hydrogels after surgical application compared to conventional silicone oils and vitreous body[J/OL]. Gels, 2023, 9(10): 837[2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/37888410/. DOI: 10.3390/gels9100837. |
| 17. | Schulz A, Rickmann A, Wahl S, et al. Alginate- and hyaluronic acid–based hydrogels as vitreous substitutes: an in vitro evaluationn[J/OL]. Transl Vis Sci Technol, 2020, 9(13): 34[2020-12-18]. https://pubmed.ncbi.nlm.nih.gov/33384888/. DOI: 10.1167/tvst.9.13.34. |
| 18. | Confalonieri F, Josifovska N, Boix-Lemonche G, et al. Vitreous substitutes from bench to the operating room in a translational approach: review and future endeavors in vitreoretinal surgery[J/OL]. Int J Mol Sci, 2023, 24(4): 3342[2023-02-07]. https://pubmed.ncbi.nlm.nih.gov/36834754/. DOI: 10.3390/ijms24043342. |
| 19. | Mieno H, Marunaka Y, Inaba T, et al. pH balance and lactic acid increase in the vitreous body of diabetes mellitus patients[J/OL]. Exp Eye Res, 2019, 188: 107789[2019-09-03]. https://pubmed.ncbi.nlm.nih.gov/31491425/. DOI: 10.1016/j.exer.2019.107789. |
| 20. | Reichel F, Auel T, Hacker MC, et al. Rheological and physicochemical optimization of hydrogels as potential vitreous body substitutes for in vitro release testing[J/OL]. Eur J Pharm Sci, 2025, 212: 107156[2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/40517552/. DOI: 10.1016/j.ejps.2025.107156. |
| 21. | Schulz A, Wahl S, Rickmann A, et al. Age-related loss of human vitreal viscoelasticity[J/OL]. Transl Vis Sci Technol, 2019, 8(3): 56[2019-06-28]. https://pubmed.ncbi.nlm.nih.gov/31293811/. DOI: 10.1167/tvst.8.3.56. |
| 22. | Liu Z, Liow SS, Lai SL, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade[J]. Nat Biomed Eng, 2019, 3(8): 598-610. DOI: 10.1038/s41551-019-0382-7. |
| 23. | Auel T, Scherke LP, Hadlich S, et al. Ex vivo visualization of distribution of intravitreal injections in the porcine vitreous and hydrogels simulating the vitreous[J/OL]. Pharmaceutics, 2023, 15(3): 786[2023-02-27]. https://pubmed.ncbi.nlm.nih.gov/36986647/. DOI: 10.3390/pharmaceutics15030786. |
| 24. | Jurak M, Wi?cek AE, ?adniak A, et al. What affects the biocompatibility of polymers?[J/OL]. Adv Colloid Interface Sci, 2021, 294: 102451[2021-05-25]. https://pubmed.ncbi.nlm.nih.gov/34098385/. DOI: 10.1016/j.cis.2021.102451. |
| 25. | Williams DF. The plasticity of biocompatibility[J/OL]. Biomaterials, 2023, 296: 122077[2023-03-09]. https://pubmed.ncbi.nlm.nih.gov/36907003/. DOI: 10.1016/j.biomaterials.2023.122077. |
| 26. | Allyn MM, Ryan AK, Rivera G, et al. In vivo assessment of an antioxidant hydrogel vitreous substitute[J/OL]. J Biomed Mater Res A, 2025, 113(1): e37813[2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/39473399/. DOI: 10.1002/jbm.a.37813. |
| 27. | Hammer M, Muuss M, Herbster L, et al. Viscoelastic, optical, and surgical properties of vitreous body replacement hydrogels after aging compared to porcine vitreous bodies and silicone oils[J/OL]. Transl Vis Sci Technol, 2024, 13(7): 5[2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/38967936/. DOI: 10.1167/tvst.13.7.5. |
| 28. | Schulz A, Germann A, Heinz WR, et al. Translation of hyaluronic acid–based vitreous substitutes towards current regulations for medical devices[J]. Acta Ophthalmologica, 2023, 101(4): 422-432. DOI: 10.1111/aos.15301. |
| 29. | Naik K, Du Toit LC, Ally N, et al. Advances in polysaccharide- and synthetic polymer-based vitreous substitutes[J/OL]. Pharmaceutics, 2023, 15(2): 566[2023-02-08]. https://pubmed.ncbi.nlm.nih.gov/36839888/. DOI: 10.3390/pharmaceutics15020566. |
| 30. | Singh A, Boustani G, Michez M, et al. Routine use of air tamponade in pars plana vitrectomy for primary rhegmatogenous retinal detachment repair[J]. Ophthalmologica, 2021, 244(6): 543-550. DOI: 10.1159/000516519. |
| 31. | Tetsumoto A, Imai H, Hayashida M, et al. The comparison of the surgical outcome of 27-gauge pars plana vitrectomy for primary rhegmatogenous retinal detachment between air and SF6 gas tamponade[J]. Eye (Lond), 2020, 34(2): 299-306. DOI: 10.1038/s41433-019-0726-2. |
| 32. | Kaya SC, Tekin K, Celik S, et al. Effect of perfluoropropane (C3F8) versus sulfurhexafluoride (SF6) tamponades on the retinal microvasculature after macular hole surgery[J/OL]. Photodiagnosis Photodyn Ther, 2023, 44: 103847[2023-10-12]. https://pubmed.ncbi.nlm.nih.gov/37838231/. DOI: 10.1016/j.pdpdt.2023.103847. |
| 33. | Kanclerz P, Grzybowski A. Complications associated with the use of expandable gases in vitrectomy[J/OL]. J Ophthalmol, 2018, 2018: 8606494[2018-11-18]. https://pubmed.ncbi.nlm.nih.gov/30581605/. DOI: 10.1155/2018/8606494. |
| 34. | Jang K, Hwang DD, Ahn J, et al. Comparison of the effect of air tamponade versus no tamponade after pars plana vitrectomy for idiopathic epiretinal membrane[J/OL]. Sci Rep, 2021, 11(1): 5082[2021-03-03]. https://pubmed.ncbi.nlm.nih.gov/33658575/. DOI: 10.1038/s41598-021-84442-z. |
| 35. | Thacker M, Tseng CL, Lin FH. Substitutes and colloidal system for vitreous replacement and drug delivery: recent progress and future prospective[J/OL]. Polymers, 2021, 13(1): 121[2020-12-30]. https://pubmed.ncbi.nlm.nih.gov/33396863/. DOI: 10.3390/polym13010121. |
| 36. | Rush RB, Del Valle Penella A, Reinauer RM, et al. Silicone oil versus perfluoropropane gas tamponade during vitrectomy for tractional retinal detachment or fibrous proliferation: a randomized clinical trial[J]. Retina, 2021, 41(7): 1407-1415. DOI: 10.1097/IAE.0000000000003052. |
| 37. | Keller J, Govetto A, Ramasamy P, et al. Comparison of perfluorodecalin and silicone oil as initial tamponade for giant retinal tear-associated retinal detachment[J]. Ophthalmologica, 2021, 244(3): 218-222. DOI: 10.1159/000516520. |
| 38. | Jun SY, Hwang DD. Effect of vitrectomy with silicone oil tamponade and internal limiting membrane peeling on eyes with proliferative diabetic retinopathy[J/OL]. Sci Rep, 2022, 12(1): 8076[2022-05-16]. https://pubmed.ncbi.nlm.nih.gov/35577870/. DOI: 10.1038/s41598-022-12113-8. |
| 39. | Vidne-Hay O, Platner E, Alhalel A, et al. Long-term silicone oil tamponade in eyes with complicated retinal detachment[J]. Eur J Ophthalmol, 2022, 32(3): 1728-1734. DOI: 10.1177/11206721211019551. |
| 40. | Moussa G, Tadros M, Ch’ng SW, et al. Outcomes of heavy silicone oil (Densiron) compared to silicone oil in primary rhegmatogenous retinal detachment: a multivariable regression model[J/OL]. Int J Retina Vitreous, 2022, 8(1): 61[2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/36057670/. DOI: 10.1186/s40942-022-00413-0. |
| 41. | Felfeli T, Murtaza F, Herman J, et al. Anatomical and functional outcomes of short-term DensironXTRA heavy silicone oil for rhegmatogenous retinal detachments: a comparative case series[J/OL]. Sci Rep, 2023, 13(1): 3729[2023-03-06]. https://pubmed.ncbi.nlm.nih.gov/36878935/. DOI: 10.1038/s41598-023-30210-0. |
| 42. | Horozoglu F, Sener H, Polat OA, et al. Evaluation of long-term outcomes associated with extended heavy-silicone oil use for the treatment of inferior retinal detachment[J/OL]. Sci Rep, 2022, 12(1): 11636[2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/35804082/. DOI: 10.1038/s41598-022-15896-y. |
| 43. | Rizzo S, Genovesi-Ebert F, Vento A, et al. A new heavy silicone oil (HWS 46-3000) used as a prolonged internal tamponade agent in complicated vitreoretinal surgery: a pilot study[J]. Retina, 2007, 27(5): 613-620. DOI: 10.1097/01.iae.0000251228.33870.64. |
| 44. | Lin X, Ge J, Gao Q, et al. Evaluation of the flexibility, efficacy, and safety of a foldable capsular vitreous body in the treatment of severe retinal detachment[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 374-381. DOI: 10.1167/iovs.10-5869. |
| 45. | Lin X, Sun X, Wang Z, et al. Three-year efficacy and safety of a silicone oil-filled foldable-capsular-vitreous-body in three cases of severe retinal detachment[J/OL]. Transl Vis Sci Technol, 2016, 5(1): 2[2016-02-01]. https://pubmed.ncbi.nlm.nih.gov/26855843/. DOI: 10.1167/tvst.5.1.2. |
| 46. | Hruby K. Hyaluronic acid as vitreous body substitute in retinal detachment[J]. Klin Monbl Augenheilkd Augenarztl Fortbild, 1961, 138: 484-496. |
| 47. | Schulz A, Wakili P, Januschowski K, et al. Safety and performance assessment of hyaluronic acid-based vitreous substitutes in patients with phthisis bulbi[J]. Acta Ophthalmologica, 2023, 101(6): 687-695. DOI: 10.1111/aos.15658. |
| 48. | Jin Y, Li Y, Song S, et al. DNA supramolecular hydrogel as a biocompatible artificial vitreous substitute[J]. Adv Mater Interfaces, 2022, 9(5): 2101321[2021-12-26]. https://onlinelibrary.wiley.com/doi/10.1002/admi.202101321. DOI: 10.1002/admi.202101321. |
| 49. | Patel DK, Jung E, Priya S, et al. Recent advances in biopolymer-based hydrogels and their potential biomedical applications[J/OL]. Carbohydr Polym, 2024, 323: 121408[2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/37940291/. DOI: 10.1016/j.carbpol.2023.121408. |
| 50. | Schramm C, Spitzer MS, Henke-Fahle S, et al. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute[J]. Invest Ophthalmol Vis Sci, 2012, 53(2): 613-621. DOI: 10.1167/iovs.11-7322. |
| 51. | Ren XJ, Bu SC, Wu D, et al. Patching retinal breaks with healaflow in 27-gauge vitrectomy for the treatment of rhegmatogenous retinal detachment[J]. Retina, 2020, 40(10): 1900-1908. DOI: 10.1097/IAE.0000000000002701. |
| 52. | Chen HA, Tai YN, Hsieh EH, et al. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes[J/OL]. Int J Biol Macromol, 2024, 275(Pt 1): 133467[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38945319/. DOI: 10.1016/j.ijbiomac.2024.133467. |
| 53. | Schnichels S, Schneider N, Hohenadl C, et al. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment[J/OL]. PloS One, 2017, 12(3): e0172895[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28248989/. DOI: 10.1371/journal.pone.0172895. |
| 54. | Pruett RC, Schepens CL, Swann DA. Hyaluronic acid vitreous substitute. A six-year clinical evaluation[J]. Arch Ophthalmol, 1979, 97(12): 2325-2330. DOI: 10.1001/archopht.1979.01020020541006. |
| 55. | Liang C, Peyman GA, Serracarbassa P, et al. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor[J]. Int Ophthalmol, 1998, 22(1): 13-18. DOI: 10.1023/a:1006016809070. |
| 56. | Tram NK, Jiang P, Torres-Flores TC, et al. A hydrogel vitreous substitute that releases antioxidant[J/OL]. Macromol Biosci, 2020, 20(2): e1900305[2019-12-17]. https://pubmed.ncbi.nlm.nih.gov/31846211/. DOI: 10.1002/mabi.201900305. |
| 57. | de Oliveira RA, Muralha FP, Grupenmacher AT, et al. Biocompatibility of polyvinyl alcohol/trisodium trimetaphosphate as vitreous substitute in experimental vitrectomy model in rabbits[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(2): 460-466. DOI: 10.1002/jbm.b.34923. |
| 58. | Sheikholeslami P, Muirhead B, Baek DS, et al. Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel[J]. Exp Eye Res, 2015, 137: 18-31. DOI: 10.1016/j.exer.2015.05.021. |
| 59. | Cheng YC, Wang CP, Liu KY, et al. Towards sustainable management of polyacrylamide in soil-water environment: occurrence, degradation, and risk[J/OL]. Sci Total Environ, 2024, 926: 171587[2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/38490421/. DOI: 10.1016/j.scitotenv.2024.171587. |
| 60. | Su WY, Chen KH, Chen YC, et al. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute[J]. J Biomater Sci Polym Ed, 2011, 22(13): 1777-1797. DOI: 10.1163/092050610X522729. |
| 61. | Wang S, Chi J, Jiang Z, et al. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute[J/OL]. Carbohydr Polym, 2021, 256: 117519[2021-03-15]. https://pubmed.ncbi.nlm.nih.gov/33483040/. DOI: 10.1016/j.carbpol.2020.117519. |
| 62. | Yu S, Wang S, Xia L, et al. Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes[J]. Int J Biol Macromol, 2022, 208: 159-171. DOI: 10.1016/j.ijbiomac.2022.03.046. |
| 63. | Baker AEG, Cui H, Ballios BG, et al. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute[J/OL]. Biomaterials, 2021, 271: 120750[2021-03-04]. https://pubmed.ncbi.nlm.nih.gov/33725584/. DOI: 10.1016/j.biomaterials.2021.120750. |
| 64. | Laradji A, Shui YB, Karakocak BB, et al. Bioinspired thermosensitive hydrogel as a vitreous substitute: synthesis, properties, and progress of animal studies[J/OL]. Materials (Basel), 2020, 13(6): 1337[2020-03-15]. https://pubmed.ncbi.nlm.nih.gov/32183465/. DOI: 10.3390/ma13061337. |
| 65. | Aranaz I, Alcántara AR, Civera MC, et al. Chitosan: an overview of its properties and applications[J/OL]. Polymers (Basel), 2021, 13(19): 3256[2021-09-24]. https://pubmed.ncbi.nlm.nih.gov/34641071/. DOI: 10.3390/polym13193256. |
| 66. | Jiang X, Peng Y, Yang C, et al. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute[J]. J Biomed Mater Res A, 2018, 106(7): 1997-2006. DOI: 10.1002/jbm.a.36403. |
| 67. | Choi G, An SH, Choi JW, et al. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function[J/OL]. Biomaterials, 2024, 305: 122459[2024-01-01]. https://pubmed.ncbi.nlm.nih.gov/38199216/. DOI: 10.1016/j.biomaterials.2023.122459. |
| 68. | Hayashi K, Okamoto F, Hoshi S, et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body[J]. Nat Biomed Eng, 2017, 1(3): 319-320. DOI: 10.1038/s41551-017-0044. |
| 69. | Ran R, Shi W, Gao Y, et al. Super-fast in situ formation of hydrogels based on multi-arm functional polyethylene glycols as endotamponade substitutes[J]. J Mater Chem B, 2021, 9(44): 9162-9173. DOI: 10.1039/D1TB01825F. |
| 70. | Wang T, Deng J, Ran R, et al. In-situ forming PEG-engineering hydrogels with anti-fouling characteristics as an artificial vitreous body[J]. Chemical Engineering Journal, 2022, 449: 137486[2022-06-11]. https://www-sciencedirect-com-s-225.libdb.csu.edu.cn/science/article/pii/S1385894722029746. DOI: 10.1016/j.cej.2022.137486. |
| 71. | Stryjewski TP, Stefater JA, Roth L, et al. PYK-1105: preclinical evaluation of a novel biodegradable vitreous substitute for retinal tamponade[J]. J Vitreoretin Dis, 2021, 5(1): 32-39. DOI: 10.1177/2474126420946632. |
| 72. | Cavalieri F, Miano F, D’Antona P, et al. Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery[J]. Biomacromolecules, 2004, 5(6): 2439-2446. DOI: 10.1021/bm049654g. |
| 73. | Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems[J/OL]. Int J Mol Sci, 2022, 23(7): 3665[2022-03-27]. https://pubmed.ncbi.nlm.nih.gov/35409025/. DOI: 10.3390/ijms23073665. |
| 74. | Schulz A, Szurman P. Vitreous substitutes as drug release systems[J/OL]. Transl Vis Sci Technol, 2022, 11(9): 14[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36125790/. DOI: 10.1167/tvst.11.9.14. |
| 75. | Annala A, Sadeghi A, Toropainen E, et al. Intravitreal sustained release of dexamethasone from a self-healing injectable hydrogel: an in vivo safety and release study[J]. Mol Pharm, 2025, 22(11): 6920-6931. DOI: 10.1021/acs.molpharmaceut.5c00872. |
| 76. | Liu Z, Liow SS, Lai SL, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade[J]. Nat Biomed Eng, 2019, 3(8): 598-610. DOI: 10.1038/s41551-019-0382-7. |
| 77. | Schulz A, Boneva SK, Lange C, et al. Tissue engineering of the vitreous body: recent progress and future trends[J/OL]. Curr Opin Ophthalmol, 2025, 36(3): 262[2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/39927468/. DOI: 10.1097/ICU.0000000000001125. |
- 1. Qu S, Tang Y, Ning Z, et al. Desired properties of polymeric hydrogel vitreous substitute[J/OL]. Biomed Pharmacother, 2024, 172: 116154[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38306844/. DOI: 10.1016/j.biopha.2024.116154.
- 2. Boneva SK, Wolf J, Rosmus DD, et al. transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population[J/OL]. Front Immunol, 2020, 11: 567274[2020-09-11]. https://pubmed.ncbi.nlm.nih.gov/33042148/. DOI: 10.3389/fimmu.2020.567274.
- 3. Ankamah E, Sebag J, Ng E, et al. Vitreous antioxidants, degeneration, and vitreo-retinopathy: exploring the links[J/OL]. Antioxidants (Basel, Switzerland), 2019, 9(1): 7[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31861871/. DOI: 10.3390/antiox9010007.
- 4. Tomita Y, Cagnone G, Fu Z, et al. Vitreous metabolomics profiling of proliferative diabetic retinopathy[J]. Diabetologia, 2021, 64(1): 70-82. DOI: 10.1007/s00125-020-05309-y.
- 5. Lin Q, Lim JYC, Xue K, et al. Polymeric hydrogels as a vitreous replacement strategy in the eye[J/OL]. Biomaterials, 2021, 268: 120547[2020-11-24]. https://pubmed.ncbi.nlm.nih.gov/33307366/. DOI: 10.1016/j.biomaterials.2020.120547.
- 6. Schulz A, Januschowski K, Szurman P. Novel vitreous substitutes: the next frontier in vitreoretinal surgery[J]. Curr Opin Ophthalmol, 2021, 32(3): 288-293. DOI: 10.1097/ICU.0000000000000745.
- 7. Chen Y, Kearns VR, Zhou L, et al. Silicone oil in vitreoretinal surgery: indications, complications, new developments and alternative long-term tamponade agents[J]. Acta Ophthalmologica, 2021, 99(3): 240-250. DOI: 10.1111/aos.14604.
- 8. Mondelo-García C, Bandín-Vilar E, García-Quintanilla L, et al. Current situation and challenges in vitreous substitutes[J/OL]. Macromol Biosci, 2021, 21(8): e2100066[2021-05-13]. https://pubmed.ncbi.nlm.nih.gov/33987966/. DOI: 10.1002/mabi.202100066.
- 9. Cai Y, Tan Y, Cao J, et al. Dual-crosslinked betaine-based amphiphilic hydrogel as a promising vitreous substitute: anti-adhesion, anti-fouling, and anti-cell proliferation[J/OL]. Adv Sci (Weinh), 2025: e13455[2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/40586226/. DOI: 10.1002/advs.202413455.
- 10. Naik K, du Toit L C, Ally N, et al. In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye[J]. Drug Deliv Transl Res, 2024, 14(10): 2668-2694. DOI: 10.1007/s13346-024-01566-1.
- 11. Schulz A, Keskar M, Swindle-Reilly KE, et al. Replacing the vitreous body with hydrogels: rationale and strategies[J/OL]. Prog Retin Eye Res, 2025, 108: 101389[2025-07-09]. https://pubmed.ncbi.nlm.nih.gov/40645475/. DOI: 10.1016/j.preteyeres.2025.101389.
- 12. 曾百卉, 王倩, 韓寧, 等. 折疊式人工玻璃體球囊研究與應用的新進展[J]. 中華眼科醫學雜志(電子版), 2021, 11(2): 104-108. DOI: 10.3877/cma.j.issn.2095-2007.2021.02.008.Zeng BH, Wang Q, Han N, et al. New progress in research and application of foldable artificial vitreous balloon[J]. Chin J Ophthalmol, 2021, 11(2): 104-108. DOI: 10.3877/cma.j.issn.2095-2007.2021.02.008.
- 13. Cai Y, Xiang Y, Dong H, et al. Injectable self-assembling peptide hydrogel as a promising vitreous substitute[J]. J Control Release, 2024, 376: 402-412. DOI: 10.1016/j.jconrel.2024.10.016.
- 14. Boneva SK, Wolf J, Jung M, et al. The multifaceted role of vitreous hyalocytes: Orchestrating inflammation, angiomodulation and erythrophagocytosis in proliferative diabetic retinopathy[J]. J Neuroinflammation, 2024, 21(1): 1-16. DOI: 10.1186/s12974-024-03291-5.
- 15. Su X, Tan M J, Li Z, et al. Recent progress in using biomaterials as vitreous substitutes[J]. Biomacromolecules, 2015, 16(10): 3093-3102. DOI: 10.1021/acs.biomac.5b01091.
- 16. Hammer M, Herth J, Muuss M, et al. Forward light scattering of first to third generation vitreous body replacement hydrogels after surgical application compared to conventional silicone oils and vitreous body[J/OL]. Gels, 2023, 9(10): 837[2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/37888410/. DOI: 10.3390/gels9100837.
- 17. Schulz A, Rickmann A, Wahl S, et al. Alginate- and hyaluronic acid–based hydrogels as vitreous substitutes: an in vitro evaluationn[J/OL]. Transl Vis Sci Technol, 2020, 9(13): 34[2020-12-18]. https://pubmed.ncbi.nlm.nih.gov/33384888/. DOI: 10.1167/tvst.9.13.34.
- 18. Confalonieri F, Josifovska N, Boix-Lemonche G, et al. Vitreous substitutes from bench to the operating room in a translational approach: review and future endeavors in vitreoretinal surgery[J/OL]. Int J Mol Sci, 2023, 24(4): 3342[2023-02-07]. https://pubmed.ncbi.nlm.nih.gov/36834754/. DOI: 10.3390/ijms24043342.
- 19. Mieno H, Marunaka Y, Inaba T, et al. pH balance and lactic acid increase in the vitreous body of diabetes mellitus patients[J/OL]. Exp Eye Res, 2019, 188: 107789[2019-09-03]. https://pubmed.ncbi.nlm.nih.gov/31491425/. DOI: 10.1016/j.exer.2019.107789.
- 20. Reichel F, Auel T, Hacker MC, et al. Rheological and physicochemical optimization of hydrogels as potential vitreous body substitutes for in vitro release testing[J/OL]. Eur J Pharm Sci, 2025, 212: 107156[2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/40517552/. DOI: 10.1016/j.ejps.2025.107156.
- 21. Schulz A, Wahl S, Rickmann A, et al. Age-related loss of human vitreal viscoelasticity[J/OL]. Transl Vis Sci Technol, 2019, 8(3): 56[2019-06-28]. https://pubmed.ncbi.nlm.nih.gov/31293811/. DOI: 10.1167/tvst.8.3.56.
- 22. Liu Z, Liow SS, Lai SL, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade[J]. Nat Biomed Eng, 2019, 3(8): 598-610. DOI: 10.1038/s41551-019-0382-7.
- 23. Auel T, Scherke LP, Hadlich S, et al. Ex vivo visualization of distribution of intravitreal injections in the porcine vitreous and hydrogels simulating the vitreous[J/OL]. Pharmaceutics, 2023, 15(3): 786[2023-02-27]. https://pubmed.ncbi.nlm.nih.gov/36986647/. DOI: 10.3390/pharmaceutics15030786.
- 24. Jurak M, Wi?cek AE, ?adniak A, et al. What affects the biocompatibility of polymers?[J/OL]. Adv Colloid Interface Sci, 2021, 294: 102451[2021-05-25]. https://pubmed.ncbi.nlm.nih.gov/34098385/. DOI: 10.1016/j.cis.2021.102451.
- 25. Williams DF. The plasticity of biocompatibility[J/OL]. Biomaterials, 2023, 296: 122077[2023-03-09]. https://pubmed.ncbi.nlm.nih.gov/36907003/. DOI: 10.1016/j.biomaterials.2023.122077.
- 26. Allyn MM, Ryan AK, Rivera G, et al. In vivo assessment of an antioxidant hydrogel vitreous substitute[J/OL]. J Biomed Mater Res A, 2025, 113(1): e37813[2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/39473399/. DOI: 10.1002/jbm.a.37813.
- 27. Hammer M, Muuss M, Herbster L, et al. Viscoelastic, optical, and surgical properties of vitreous body replacement hydrogels after aging compared to porcine vitreous bodies and silicone oils[J/OL]. Transl Vis Sci Technol, 2024, 13(7): 5[2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/38967936/. DOI: 10.1167/tvst.13.7.5.
- 28. Schulz A, Germann A, Heinz WR, et al. Translation of hyaluronic acid–based vitreous substitutes towards current regulations for medical devices[J]. Acta Ophthalmologica, 2023, 101(4): 422-432. DOI: 10.1111/aos.15301.
- 29. Naik K, Du Toit LC, Ally N, et al. Advances in polysaccharide- and synthetic polymer-based vitreous substitutes[J/OL]. Pharmaceutics, 2023, 15(2): 566[2023-02-08]. https://pubmed.ncbi.nlm.nih.gov/36839888/. DOI: 10.3390/pharmaceutics15020566.
- 30. Singh A, Boustani G, Michez M, et al. Routine use of air tamponade in pars plana vitrectomy for primary rhegmatogenous retinal detachment repair[J]. Ophthalmologica, 2021, 244(6): 543-550. DOI: 10.1159/000516519.
- 31. Tetsumoto A, Imai H, Hayashida M, et al. The comparison of the surgical outcome of 27-gauge pars plana vitrectomy for primary rhegmatogenous retinal detachment between air and SF6 gas tamponade[J]. Eye (Lond), 2020, 34(2): 299-306. DOI: 10.1038/s41433-019-0726-2.
- 32. Kaya SC, Tekin K, Celik S, et al. Effect of perfluoropropane (C3F8) versus sulfurhexafluoride (SF6) tamponades on the retinal microvasculature after macular hole surgery[J/OL]. Photodiagnosis Photodyn Ther, 2023, 44: 103847[2023-10-12]. https://pubmed.ncbi.nlm.nih.gov/37838231/. DOI: 10.1016/j.pdpdt.2023.103847.
- 33. Kanclerz P, Grzybowski A. Complications associated with the use of expandable gases in vitrectomy[J/OL]. J Ophthalmol, 2018, 2018: 8606494[2018-11-18]. https://pubmed.ncbi.nlm.nih.gov/30581605/. DOI: 10.1155/2018/8606494.
- 34. Jang K, Hwang DD, Ahn J, et al. Comparison of the effect of air tamponade versus no tamponade after pars plana vitrectomy for idiopathic epiretinal membrane[J/OL]. Sci Rep, 2021, 11(1): 5082[2021-03-03]. https://pubmed.ncbi.nlm.nih.gov/33658575/. DOI: 10.1038/s41598-021-84442-z.
- 35. Thacker M, Tseng CL, Lin FH. Substitutes and colloidal system for vitreous replacement and drug delivery: recent progress and future prospective[J/OL]. Polymers, 2021, 13(1): 121[2020-12-30]. https://pubmed.ncbi.nlm.nih.gov/33396863/. DOI: 10.3390/polym13010121.
- 36. Rush RB, Del Valle Penella A, Reinauer RM, et al. Silicone oil versus perfluoropropane gas tamponade during vitrectomy for tractional retinal detachment or fibrous proliferation: a randomized clinical trial[J]. Retina, 2021, 41(7): 1407-1415. DOI: 10.1097/IAE.0000000000003052.
- 37. Keller J, Govetto A, Ramasamy P, et al. Comparison of perfluorodecalin and silicone oil as initial tamponade for giant retinal tear-associated retinal detachment[J]. Ophthalmologica, 2021, 244(3): 218-222. DOI: 10.1159/000516520.
- 38. Jun SY, Hwang DD. Effect of vitrectomy with silicone oil tamponade and internal limiting membrane peeling on eyes with proliferative diabetic retinopathy[J/OL]. Sci Rep, 2022, 12(1): 8076[2022-05-16]. https://pubmed.ncbi.nlm.nih.gov/35577870/. DOI: 10.1038/s41598-022-12113-8.
- 39. Vidne-Hay O, Platner E, Alhalel A, et al. Long-term silicone oil tamponade in eyes with complicated retinal detachment[J]. Eur J Ophthalmol, 2022, 32(3): 1728-1734. DOI: 10.1177/11206721211019551.
- 40. Moussa G, Tadros M, Ch’ng SW, et al. Outcomes of heavy silicone oil (Densiron) compared to silicone oil in primary rhegmatogenous retinal detachment: a multivariable regression model[J/OL]. Int J Retina Vitreous, 2022, 8(1): 61[2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/36057670/. DOI: 10.1186/s40942-022-00413-0.
- 41. Felfeli T, Murtaza F, Herman J, et al. Anatomical and functional outcomes of short-term DensironXTRA heavy silicone oil for rhegmatogenous retinal detachments: a comparative case series[J/OL]. Sci Rep, 2023, 13(1): 3729[2023-03-06]. https://pubmed.ncbi.nlm.nih.gov/36878935/. DOI: 10.1038/s41598-023-30210-0.
- 42. Horozoglu F, Sener H, Polat OA, et al. Evaluation of long-term outcomes associated with extended heavy-silicone oil use for the treatment of inferior retinal detachment[J/OL]. Sci Rep, 2022, 12(1): 11636[2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/35804082/. DOI: 10.1038/s41598-022-15896-y.
- 43. Rizzo S, Genovesi-Ebert F, Vento A, et al. A new heavy silicone oil (HWS 46-3000) used as a prolonged internal tamponade agent in complicated vitreoretinal surgery: a pilot study[J]. Retina, 2007, 27(5): 613-620. DOI: 10.1097/01.iae.0000251228.33870.64.
- 44. Lin X, Ge J, Gao Q, et al. Evaluation of the flexibility, efficacy, and safety of a foldable capsular vitreous body in the treatment of severe retinal detachment[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 374-381. DOI: 10.1167/iovs.10-5869.
- 45. Lin X, Sun X, Wang Z, et al. Three-year efficacy and safety of a silicone oil-filled foldable-capsular-vitreous-body in three cases of severe retinal detachment[J/OL]. Transl Vis Sci Technol, 2016, 5(1): 2[2016-02-01]. https://pubmed.ncbi.nlm.nih.gov/26855843/. DOI: 10.1167/tvst.5.1.2.
- 46. Hruby K. Hyaluronic acid as vitreous body substitute in retinal detachment[J]. Klin Monbl Augenheilkd Augenarztl Fortbild, 1961, 138: 484-496.
- 47. Schulz A, Wakili P, Januschowski K, et al. Safety and performance assessment of hyaluronic acid-based vitreous substitutes in patients with phthisis bulbi[J]. Acta Ophthalmologica, 2023, 101(6): 687-695. DOI: 10.1111/aos.15658.
- 48. Jin Y, Li Y, Song S, et al. DNA supramolecular hydrogel as a biocompatible artificial vitreous substitute[J]. Adv Mater Interfaces, 2022, 9(5): 2101321[2021-12-26]. https://onlinelibrary.wiley.com/doi/10.1002/admi.202101321. DOI: 10.1002/admi.202101321.
- 49. Patel DK, Jung E, Priya S, et al. Recent advances in biopolymer-based hydrogels and their potential biomedical applications[J/OL]. Carbohydr Polym, 2024, 323: 121408[2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/37940291/. DOI: 10.1016/j.carbpol.2023.121408.
- 50. Schramm C, Spitzer MS, Henke-Fahle S, et al. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute[J]. Invest Ophthalmol Vis Sci, 2012, 53(2): 613-621. DOI: 10.1167/iovs.11-7322.
- 51. Ren XJ, Bu SC, Wu D, et al. Patching retinal breaks with healaflow in 27-gauge vitrectomy for the treatment of rhegmatogenous retinal detachment[J]. Retina, 2020, 40(10): 1900-1908. DOI: 10.1097/IAE.0000000000002701.
- 52. Chen HA, Tai YN, Hsieh EH, et al. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes[J/OL]. Int J Biol Macromol, 2024, 275(Pt 1): 133467[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38945319/. DOI: 10.1016/j.ijbiomac.2024.133467.
- 53. Schnichels S, Schneider N, Hohenadl C, et al. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment[J/OL]. PloS One, 2017, 12(3): e0172895[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28248989/. DOI: 10.1371/journal.pone.0172895.
- 54. Pruett RC, Schepens CL, Swann DA. Hyaluronic acid vitreous substitute. A six-year clinical evaluation[J]. Arch Ophthalmol, 1979, 97(12): 2325-2330. DOI: 10.1001/archopht.1979.01020020541006.
- 55. Liang C, Peyman GA, Serracarbassa P, et al. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor[J]. Int Ophthalmol, 1998, 22(1): 13-18. DOI: 10.1023/a:1006016809070.
- 56. Tram NK, Jiang P, Torres-Flores TC, et al. A hydrogel vitreous substitute that releases antioxidant[J/OL]. Macromol Biosci, 2020, 20(2): e1900305[2019-12-17]. https://pubmed.ncbi.nlm.nih.gov/31846211/. DOI: 10.1002/mabi.201900305.
- 57. de Oliveira RA, Muralha FP, Grupenmacher AT, et al. Biocompatibility of polyvinyl alcohol/trisodium trimetaphosphate as vitreous substitute in experimental vitrectomy model in rabbits[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(2): 460-466. DOI: 10.1002/jbm.b.34923.
- 58. Sheikholeslami P, Muirhead B, Baek DS, et al. Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel[J]. Exp Eye Res, 2015, 137: 18-31. DOI: 10.1016/j.exer.2015.05.021.
- 59. Cheng YC, Wang CP, Liu KY, et al. Towards sustainable management of polyacrylamide in soil-water environment: occurrence, degradation, and risk[J/OL]. Sci Total Environ, 2024, 926: 171587[2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/38490421/. DOI: 10.1016/j.scitotenv.2024.171587.
- 60. Su WY, Chen KH, Chen YC, et al. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute[J]. J Biomater Sci Polym Ed, 2011, 22(13): 1777-1797. DOI: 10.1163/092050610X522729.
- 61. Wang S, Chi J, Jiang Z, et al. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute[J/OL]. Carbohydr Polym, 2021, 256: 117519[2021-03-15]. https://pubmed.ncbi.nlm.nih.gov/33483040/. DOI: 10.1016/j.carbpol.2020.117519.
- 62. Yu S, Wang S, Xia L, et al. Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes[J]. Int J Biol Macromol, 2022, 208: 159-171. DOI: 10.1016/j.ijbiomac.2022.03.046.
- 63. Baker AEG, Cui H, Ballios BG, et al. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute[J/OL]. Biomaterials, 2021, 271: 120750[2021-03-04]. https://pubmed.ncbi.nlm.nih.gov/33725584/. DOI: 10.1016/j.biomaterials.2021.120750.
- 64. Laradji A, Shui YB, Karakocak BB, et al. Bioinspired thermosensitive hydrogel as a vitreous substitute: synthesis, properties, and progress of animal studies[J/OL]. Materials (Basel), 2020, 13(6): 1337[2020-03-15]. https://pubmed.ncbi.nlm.nih.gov/32183465/. DOI: 10.3390/ma13061337.
- 65. Aranaz I, Alcántara AR, Civera MC, et al. Chitosan: an overview of its properties and applications[J/OL]. Polymers (Basel), 2021, 13(19): 3256[2021-09-24]. https://pubmed.ncbi.nlm.nih.gov/34641071/. DOI: 10.3390/polym13193256.
- 66. Jiang X, Peng Y, Yang C, et al. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute[J]. J Biomed Mater Res A, 2018, 106(7): 1997-2006. DOI: 10.1002/jbm.a.36403.
- 67. Choi G, An SH, Choi JW, et al. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function[J/OL]. Biomaterials, 2024, 305: 122459[2024-01-01]. https://pubmed.ncbi.nlm.nih.gov/38199216/. DOI: 10.1016/j.biomaterials.2023.122459.
- 68. Hayashi K, Okamoto F, Hoshi S, et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body[J]. Nat Biomed Eng, 2017, 1(3): 319-320. DOI: 10.1038/s41551-017-0044.
- 69. Ran R, Shi W, Gao Y, et al. Super-fast in situ formation of hydrogels based on multi-arm functional polyethylene glycols as endotamponade substitutes[J]. J Mater Chem B, 2021, 9(44): 9162-9173. DOI: 10.1039/D1TB01825F.
- 70. Wang T, Deng J, Ran R, et al. In-situ forming PEG-engineering hydrogels with anti-fouling characteristics as an artificial vitreous body[J]. Chemical Engineering Journal, 2022, 449: 137486[2022-06-11]. https://www-sciencedirect-com-s-225.libdb.csu.edu.cn/science/article/pii/S1385894722029746. DOI: 10.1016/j.cej.2022.137486.
- 71. Stryjewski TP, Stefater JA, Roth L, et al. PYK-1105: preclinical evaluation of a novel biodegradable vitreous substitute for retinal tamponade[J]. J Vitreoretin Dis, 2021, 5(1): 32-39. DOI: 10.1177/2474126420946632.
- 72. Cavalieri F, Miano F, D’Antona P, et al. Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery[J]. Biomacromolecules, 2004, 5(6): 2439-2446. DOI: 10.1021/bm049654g.
- 73. Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems[J/OL]. Int J Mol Sci, 2022, 23(7): 3665[2022-03-27]. https://pubmed.ncbi.nlm.nih.gov/35409025/. DOI: 10.3390/ijms23073665.
- 74. Schulz A, Szurman P. Vitreous substitutes as drug release systems[J/OL]. Transl Vis Sci Technol, 2022, 11(9): 14[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36125790/. DOI: 10.1167/tvst.11.9.14.
- 75. Annala A, Sadeghi A, Toropainen E, et al. Intravitreal sustained release of dexamethasone from a self-healing injectable hydrogel: an in vivo safety and release study[J]. Mol Pharm, 2025, 22(11): 6920-6931. DOI: 10.1021/acs.molpharmaceut.5c00872.
- 76. Liu Z, Liow SS, Lai SL, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade[J]. Nat Biomed Eng, 2019, 3(8): 598-610. DOI: 10.1038/s41551-019-0382-7.
- 77. Schulz A, Boneva SK, Lange C, et al. Tissue engineering of the vitreous body: recent progress and future trends[J/OL]. Curr Opin Ophthalmol, 2025, 36(3): 262[2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/39927468/. DOI: 10.1097/ICU.0000000000001125.

