| 1. |
中華醫學會眼科學分會眼底病學組, 中國醫師協會眼科醫師分會眼底病專業委員會. 我國糖尿病視網膜病變臨床診療指南(2022年)——基于循證醫學修訂[J]. 中華眼底病雜志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Fundus Disease Group of Ophthalmological Society of Chinese Medical Association Fundus Disease Group of Ophthalmologist Branch of Chinese Medical Doctor Association. Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022)[J]. Chin J Ocul Fundus Dis, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.
|
| 2. |
Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. DOI: 10.1126/science.1957169.
|
| 3. |
De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24(9): 1342-1350. DOI: 10.1038/s41591-018-0107-6.
|
| 4. |
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29. DOI: 10.1016/j.preteyeres.2018.07.004.
|
| 5. |
Li Z, Guo C, Nie D, et al. Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images[J]. Br J Ophthalmol, 2021, 105(11): 1548-1554. DOI: 10.1136/bjophthalmol-2020-317327.
|
| 6. |
Bellemo V, Lim ZW, Lim G, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study[J/OL]. Lancet Digit Health, 2019, 1(1): e35-e44[2019-05-02]. https://pubmed.ncbi.nlm.nih.gov/33323239/. DOI: 10.1016/S2589-7500(19)30004-4.
|
| 7. |
Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223. DOI: 10.1001/jama.2017.18152.
|
| 8. |
Li Z, Wang L, Wu X, et al. Artificial intelligence in ophthalmology: the path to the real-world clinic[J/OL]. Cell Rep Med, 2023, 4(7): 101095[2023-07-18]. https://pubmed.ncbi.nlm.nih.gov/37385253/. DOI: 10.1016/j.xcrm.2023.101095.
|
| 9. |
Liu X, Zhao C, Wang L, et al. Evaluation of an OCT-AI-based telemedicine platform for retinal disease screening and referral in a primary care setting[J/OL]. Transl Vis Sci Technol, 2022, 11(3): 4[2022-03-02]. https://pubmed.ncbi.nlm.nih.gov/35254422/. DOI: 10.1167/tvst.11.3.4.
|
| 10. |
Shekhawat NS, Niziol LM, Sharma SS, et al. The utility of routine fundus photography screening for posterior segment disease: a stepped-wedge, cluster-randomized trial in South India[J]. Ophthalmology, 2021, 128(7): 1060-1069. DOI: 10.1016/j.ophtha.2020.11.025.
|
| 11. |
Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: the International Council of Ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007.
|
| 12. |
Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. Lancet Diabetes Endocrinol, 2020, 8(4): 337-347. DOI: 10.1016/S2213-8587(19)30411-5.
|
| 13. |
Spaide RF, Curcio CA. Drusen characterization with multimodal imaging[J]. Retina, 2010, 30(9): 1441-1454. DOI: 10.1097/IAE.0b013e3181ee5ce8.
|
| 14. |
Wu Z, Luu CD, Ayton LN, et al. Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration[J]. Ophthalmology, 2014, 121(12): 2415-2422. DOI: 10.1016/j.ophtha.2014.06.034.
|
| 15. |
Zhang Z, Deng C, Paulus YM. Advances in structural and functional retinal imaging and biomarkers for early detection of diabetic retinopathy[J/OL]. Biomedicines, 2024, 12(7): 1405[2024-06-25]. https://pubmed.ncbi.nlm.nih.gov/39061979/. DOI: 10.3390/biomedicines12071405.
|
| 16. |
Schmidt-Erfurth U, Chong V, Loewenstein A, et al. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA)[J]. Br J Ophthalmol, 2014, 98(9): 1144-1167. DOI: 10.1136/bjophthalmol-2014-305702.
|
| 17. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Age-related macular degeneration preferred practice pattern?[J]. Ophthalmology, 2020, 127(1): 1-65. DOI: 10.1016/j.ophtha.2019.09.024.
|
| 18. |
鄢聞嘉, 羅德倫, 馮加勁, 等. 眼底抗血管內皮生長因子藥物應用與創新[J]. 中華眼底病雜志, 2023, 39(8): 701-707. DOI: 10.3760/cma.j.cn511434-20220620-00371.Yan WJ, Luo DL, Feng JJ, et al. An update on anti-vascular endothelial growth factor therapy in retinal diseases[J]. Chin J Ocul Fundus Dis, 2023, 39(8): 701-707. DOI: 10.3760/cma.j.cn511434-20220620-00371.
|
| 19. |
Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, Bevacizumab, or Ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial[J]. Ophthalmology, 2016, 123(6): 1351-1359. DOI: 10.1016/j.ophtha.2016.02.022.
|
| 20. |
Gu C, Wang Y, Jiang Y, et al. Application of artificial intelligence system for screening multiple fundus diseases in Chinese primary healthcare settings: a real-world, multicentre and cross-sectional study of 4795 cases[J]. Br J Ophthalmol, 2024, 108(3): 424-431. DOI: 10.1136/bjo-2022-322940.
|
| 21. |
Ruamviboonsuk P, Tiwari R, Sayres R, et al. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study[J/OL]. Lancet Digit Health, 2022, 4(4): e235-e244[2022-03-07]. https://pubmed.ncbi.nlm.nih.gov/35272972/. DOI: 10.1016/S2589-7500(22)00017-6.
|
| 22. |
Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study[J/OL]. Lancet Digit Health, 2020, 2(5): e240-e249[2020-04-23]. https://pubmed.ncbi.nlm.nih.gov/33328056/. DOI: 10.1016/S2589-7500(20)30060-1.
|
| 23. |
Cui T, Lin D, Yu S, et al. deep learning performance of ultra-widefield fundus imaging for screening retinal lesions in rural locales[J]. JAMA Ophthalmol, 2023, 141(11): 1045-1051. DOI: 10.1001/jamaophthalmol.2023.4650.
|
| 24. |
Zhang J, Lin S, Cheng T, et al. RETFound-enhanced community-based fundus disease screening: real-world evidence and decision curve analysis[J/OL]. NPJ Digit Med, 2024, 7(1): 108[2024-04-30]. https://pubmed.ncbi.nlm.nih.gov/38693205/. DOI: 10.1038/s41746-024-01109-5.
|
| 25. |
Shekhawat NS, Niziol LM, Sharma SS, et al. The utility of routine fundus photography screening for posterior segment disease: a stepped-wedge, cluster-randomized trial in South India[J]. Ophthalmology, 2021, 128(7): 1060-1069. DOI: 10.1016/j.ophtha.2020.11.025.
|