- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China;
Tuberculosis caused by Mycobacterium tuberculosis is the leading infectious killer posing a major public health threat. The clinical manifestations of ocular tuberculosis are highly heterogeneous. Currently, the diagnosis of ocular tuberculosis still heavily relies on comprehensive clinical judgment and response to anti-tuberculosis therapy. Tuberculosis-specific T-cell detection quantifies the intensity of antigen-specific T-cell responses, providing indirect evidence for the diagnosis of tuberculosis infection. It has become a key auxiliary examination in the diagnosis and management of ocular tuberculosis but must be closely integrated with clinical manifestations and imaging features. A positive result suggests the involvement of a tuberculous immune response but cannot alone confirm a diagnosis of ocular tuberculosis. Future efforts should integrate T-SPOT.TB testing with other diagnostic tools, standardize diagnostic procedures, and explore the mechanisms linking T-cell subset functions with the intraocular immune microenvironment. Further elucidation of the relationship between T-cell responses and ocular tuberculosis phenotypes will help advance personalized treatment.
Copyright ? the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
| 1. | Pai M, Behr MA, Dowdy D, et al. Tuberculosis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16076[2016-10-27]. https://pubmed.ncbi.nlm.nih.gov/27784885/. DOI: 10.1038/nrdp.2016.76. |
| 2. | Li J, Zhao M, Huang W, et al. Clinical characteristics and genomic epidemiological survey of tuberculosis in Wuzhou, China, 2022[J/OL]. Microbiol Spectr, 2025, 13(5): e0247424[2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/40207933/. DOI: 10.1128/spectrum.02474-24. |
| 3. | Flynn JL, Chan J. Immunology of tuberculosis[J]. Annu Rev Immunol, 2001, 19: 93-129. DOI: 10.1146/annurev.immunol.19.1.93. |
| 4. | Gupta A, Sharma A, Bansal R, et al. Classification of intraocular tuberculosis[J]. Ocul Immunol Inflamm, 2015, 23(1): 7-13. DOI: 10.3109/09273948.2014.967358. |
| 5. | Gupta A, Bansal R, Gupta V, et al. Ocular signs predictive of tubercular uveitis[J]. Am J Ophthalmol, 2010, 149(4): 562-570. DOI: 10.1016/j.ajo.2009.11.020. |
| 6. | Gupta A, Gupta V, Arora S, et al. PCR-positive tubercular retinal vasculitis: clinical characteristics and management[J]. Retina, 2001, 21(5): 435-444. DOI: 10.1097/00006982-200110000-00004. |
| 7. | Betzler BK, Putera I, Testi I, et al. Anti-tubercular therapy in the treatment of tubercular uveitis: a systematic review and meta-analysis[J]. Surv Ophthalmol, 2023, 68(2): 241-256. DOI: 10.1016/j.survophthal.2022.10.001. |
| 8. | Sulaiman II, Bani Saad MA, Bani-Saad AA, et al. Challenges and insights in the diagnosis and management of orbital tuberculosis: a systematic review of 113 cases[J/OL]. Cureus, 2024, 16(9): e68976[2024-09-09]. https://pubmed.ncbi.nlm.nih.gov/39385881/. DOI: 10.7759/cureus.68976. |
| 9. | Agnaou A, Abderrahim H, Tlemcani Y, et al. Pediatric ocular tuberculosis: epidemiological and clinical profile and particular issues regarding treatment[J/OL]. J Fr Ophtalmol, 2025, 48(7): 104586[2025-07-23]. https://pubmed.ncbi.nlm.nih.gov/40706173/. DOI: 10.1016/j.jfo.2025.104586. |
| 10. | Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review[J]. Lancet Infect Dis, 2006, 6(9): 570-581. DOI: 10.1016/S1473-3099(06)70578-3. |
| 11. | Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: from probes to genomes[J]. Infect Genet Evol, 2019, 72: 93-112. DOI: 10.1016/j.meegid.2018.11.021. |
| 12. | Gong X, He Y, Zhou K, et al. Efficacy of Xpert in tuberculosis diagnosis based on various specimens: a systematic review and meta-analysis[J/OL]. Front Cell Infect Microbiol, 2023, 13: 1149741[2023-05-02]. https://pubmed.ncbi.nlm.nih.gov/37201118/. DOI: 10.3389/fcimb.2023.1149741. |
| 13. | Trad S, Bodaghi B, Saadoun D. Update on immunological test (Quantiferon-TB Gold) contribution in the management of tuberculosis-related ocular inflammation[J]. Ocul Immunol Inflamm, 2018, 26(8): 1192-1199. DOI: 10.1080/09273948.2017.1332232. |
| 14. | Ang M, Chee SP. Controversies in ocular tuberculosis[J]. Br J Ophthalmol, 2017, 101(1): 6-9. DOI: 10.1136/bjophthalmol-2016-309531. |
| 15. | Arend SM, Geluk A, van Meijgaarden KE, et al. Antigenic equivalence of human T-cell responses to Mycobacterium tuberculosis-specific RD1-encoded protein antigens ESAT-6 and culture filtrate protein 10 and to mixtures of synthetic peptides[J]. Infect Immun, 2000, 68(6): 3314-3321. DOI: 10.1128/IAI.68.6.3314-3321.2000. |
| 16. | Renshaw PS, Panagiotidou P, Whelan A, et al. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1: 1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence[J]. J Biol Chem, 2002, 277(24): 21598-21603. DOI: 10.1074/jbc.M201625200. |
| 17. | Guinn KM, Hickey MJ, Mathur SK, et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis[J]. Mol Microbiol, 2004, 51(2): 359-370. DOI: 10.1046/j.1365-2958.2003.03844.x. |
| 18. | Lu X, Li C, Li W, et al. Use of Interferon-γ release assay for the diagnosis of female genital tuberculosis in Northwest China[J/OL]. J Clin Lab Anal, 2019. 33(1): e22621[2018-07-13]. https://pubmed.ncbi.nlm.nih.gov/30006939/. DOI: 10.1002/jcla.22621. |
| 19. | Sedegah M. The ex vivo IFN-γ enzyme-linked immunospot (ELISpot) assay[J]. Methods Mol Biol, 2015, 1325: 197-205. DOI: 10.1007/978-1-4939-2815-6_16. |
| 20. | Tagirasa R, Parmar S, Barik MR, et al. Autoreactive T cells in immunopathogenesis of TB-associated uveitis[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5682-5691. DOI: 10.1167/iovs.17-22462. |
| 21. | Sharma RK, Gupta A, Kamal S, et al. Role of regulatory T cells in Tubercular uveitis[J]. Ocul Immunol Inflamm, 2018, 26(1): 27-36. DOI: 10.1080/09273948.2016.1196711. |
| 22. | Setiabudiawan TP, Apriani L, Verrall AJ, et al. Immune correlates of early clearance of Mycobacterium tuberculosis among tuberculosis household contacts in indonesia[J/OL]. Nat Commun, 2025, 16(1): 309[2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/39747050/. DOI: 10.1038/s41467-024-55501-6. |
| 23. | Kimura M, Umekita K, Iwao C, et al. Antiviral immune response against HTLV-1 invalidates T-SPOT. TB(?) results in patients with HTLV-1-positive rheumatic diseases[J/OL]. Front Immunol, 2024, 15: 1480506[2024-10-29]. https://pubmed.ncbi.nlm.nih.gov/39534598/. DOI: 10.3389/fimmu.2024.1480506. |
| 24. | Voigt V, Wikstrom ME, Kezic JM, et al. Ocular antigen does not cause disease unless presented in the context of inflammation[J/OL]. Sci Rep, 2017, 7(1): 14226[2017-10-27]. https://pubmed.ncbi.nlm.nih.gov/29079770/. DOI: 10.1038/s41598-017-14618-z. |
| 25. | Agrawal R, Testi I, Rousselot A, et al. Insights into the molecular pathogenesis of ocular tuberculosis[J/OL]. Tuberculosis (Edinb), 2021, 126: 102018[2020-11-12]. https://pubmed.ncbi.nlm.nih.gov/33202350/. DOI: 10.1016/j.tube.2020.102018. |
| 26. | Putera I, Schrijver B, Ten Berge JCEM, et al. The immune response in tubercular uveitis and its implications for treatment: from anti-tubercular treatment to host-directed therapies[J/OL]. Prog Retin Eye Res, 2023, 95: 101189[2023-05-25]. https://pubmed.ncbi.nlm.nih.gov/37236420/. DOI: 10.1016/j.preteyeres.2023.101189. |
| 27. | Putera I, Swagemakers SMA, Nagtzaam NMA, et al. Mycobacterium tuberculosis infection of retinal endothelial cells induces interferon signaling activation: insights Into Tubercular retinal vasculitis[J/OL]. Invest Ophthalmol Vis Sci, 2025, 66(9): 48[2025-07-01]. https://pubmed.ncbi.nlm.nih.gov/40668059/. DOI: 10.1167/iovs.66.9.48. |
| 28. | Putera I, Quiros JDV, Rombach SM, et al. Artificial intelligence-based uveitis diagnosis through retinal vasculature analysis: a paradigm shift in ocular Tuberculosis[J]. Ophthalmol Ther, 2025, 14(4): 717-732. DOI: 10.1007/s40123-025-01103-4. |
| 29. | Diedrich CR, O'Hern J, Gutierrez MG, et al. Relationship between HIV coinfection, interleukin 10 production, and mycobacterium tuberculosis in human lymph node granulomas[J]. J Infect Dis, 2016, 214(9): 1309-1318. DOI: 10.1093/infdis/jiw313. |
| 30. | Hakim A, Komaratih E, Zuhria I. Pediatric ocular tuberculosis: a case report of complex clinical manifestations and its successful management[J/OL]. Pan Afr Med J, 2024, 49: 68[2024-11-08]. https://pubmed.ncbi.nlm.nih.gov/39958567/. DOI: 10.11604/pamj.2024.49.68.45595. |
| 31. | Liu C, Wang X, Cao X. Research trends of ocular Tuberculosis: a bibliometric analysis[J]. Ocul Immunol Inflamm, 2025, 33(7): 1188-1200. DOI: 10.1080/09273948.2024.2437124. |
| 32. | Whitworth HS, Badhan A, Boakye AA, et al. Clinical utility of existing and second-generation interferon-γ release assays for diagnostic evaluation of tuberculosis: an observational cohort study[J]. Lancet Infect Dis, 2019, 19(2): 193-202. DOI: 10.1016/S1473-3099(18)30613-3. |
| 33. | Aishwarya R, Maheshwary D, Kv L, et al. Performance of current diagnostic tools in detecting latent Tuberculosis among healthcare workers: a systematic review[J/OL]. Cureus, 2024, 16(10): e70621[2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/39483545/. DOI: 10.7759/cureus.70621. |
| 34. | Zhong H, Wu H, Yu Z, et al. Clinical evaluation of the T-SPOT. TB test for detection of tuberculosis infection in northeastern Guangdong Province, China[J/OL]. J Int Med Res, 2020, 48(5): 300060520923534[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/32475200/. DOI: 10.1177/0300060520923534. |
| 35. | Feng JY, Huang SF, Lee MC, et al. Characteristics of IFN-γ responses in IGRA among pulmonary TB suspects in a TB-endemic area[J]. Diagn Microbiol Infect Dis, 2013, 77(1): 46-52. DOI: 10.1016/j.diagmicrobio.2013.05.020. |
| 36. | Ling DI, Pai M, Davids V, et al. Are interferon-γ release assays useful for diagnosing active tuberculosis in a high-burden setting?[J]. Eur Respir J, 2011, 38(3): 649-656. DOI: 10.1183/09031936.00181610. |
| 37. | Ma Y, Li R, Shen J, et al. Clinical effect of T-SPOT. TB test for the diagnosis of tuberculosis[J/OL]. BMC Infect Dis, 2019, 19(1): 993[2019-11-21]. https://pubmed.ncbi.nlm.nih.gov/31752713/. DOI: 10.1186/s12879-019-4597-8. |
| 38. | Zhang L, Shi X, Zhang Y, et al. Analysis of factors influencing diagnostic accuracy of T-SPOT. TB for active Tuberculosis in clinical practice[J/OL]. Sci Rep, 2017, 7(1): 7764[2017-08-10]. https://pubmed.ncbi.nlm.nih.gov/28798488/. DOI: 10.1038/s41598-017-07785-6. |
| 39. | Cheng XH, Bian SN, Zhang YQ, et al. Diagnostic value of T-cell interferon-γ release assays on synovial fluid for articular Tuberculosis: a pilot study[J]. Chin Med J (Engl), 2016, 129(10): 1171-1178. DOI: 10.4103/0366-6999.181958. |
| 40. | Pan L, Liu F, Zhang J, et al. Interferon-gamma release assay performance of cerebrospinal fluid and peripheral blood in Tuberculous meningitis in China[J/OL]. Biomed Res Int, 2017, 2017: 8198505[2017-02-20]. https://pubmed.ncbi.nlm.nih.gov/28316991/. DOI: 10.1155/2017/8198505. |
| 41. | Putera I, Rothova A, La Distia Nora R. Comparison of uveitis manifestations in patients with active systemic tuberculosis and those with positive interferon-gamma release assay without active disease[J]. Eye (Lond), 2025, 39(9): 1772-1780. DOI: 10.1038/s41433-025-03751-z. |
| 42. | Choudhary Balla S, Ali MH, et al. Systemic and ocular outcomes in TB-immunoreactive patients receiving immunomodulatory therapy for non-infectious uveitis: a case-control study[J]. Br J Ophthalmol, 2024, 109(1): 41-44. DOI: 10.1136/bjo-2024-325625. |
| 43. | Zhong Z, Su G, Zhou Q, et al. Tuberculosis exposure with risk of Beh?et disease among patients with uveitis[J]. JAMA Ophthalmol, 2021, 139(4): 415-422. DOI: 10.1001/jamaophthalmol.2020.6985. |
| 44. | Sato R, Takasaka N, Hosaka Y, et al. Association between the extent of intrapulmonary spread on chest CT and false-negative results of T-SPOT. TB in pulmonary tuberculosis: a retrospective study[J/OL]. BMC Infect Dis, 2025, 25(1): 391[2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/40114064/. DOI: 10.1186/s12879-025-10777-x. |
| 45. | Batista MV, Sassine J, Khawaja F, et al. The utility of interferon-γ release assays in the diagnosis of Tuberculosis in patients with cancer[J/OL]. Transpl Infect Dis, 2025, 27(2): e14428[2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/39731624/. DOI: 10.1111/tid.14428. |
| 46. | Zhong J, Li Y, Chen Y, et al. Systemic vasculitis with latent tuberculosis infection and associated factors: a cross-sectional multicenter study[J]. Clin Rheumatol, 2025, 44(3): 1269-1277. DOI: 10.1007/s10067-024-07279-7. |
| 47. | Bosco MJ, Hou H, Mao L, et al. The performance of the TBAg/PHA ratio in the diagnosis of active TB disease in immunocompromised patients[J]. Int J Infect Dis, 2017, 59: 55-60. DOI: 10.1016/j.ijid.2017.03.025. |
| 48. | Liu Y, Yao L, Wang F, et al. The TBAg/PHA ratio in T-SPOT. TB assay has high prospective value in the diagnosis of active tuberculosis: a multicenter study in China[J/OL]. Respir Res, 2021, 22(1): 165[2021-06-01]. https://pubmed.ncbi.nlm.nih.gov/34074288/. DOI: 10.1186/s12931-021-01753-5. |
| 49. | Sun Y, Yao X, Ni Y, et al. Diagnostic efficacy of T-SPOT. TB for active Tuberculosis in adult: a retrospective study[J]. Infect Drug Resist, 2022, 15: 7077-7093. DOI: 10.2147/IDR.S388568. |
| 50. | Yang Q, Zhang C, Ruan Q, et al. Higher T-SPOT. TB threshold may aid in diagnosing active tuberculosis?: a real-world clinical practice in a general hospital[J]. Clin Chim Acta, 2020, 509: 60-66. DOI: 10.1016/j.cca.2020.06.005. |
| 51. | Wang H, Li Y, Zhang L, et al. Diagnostic accuracy of T-SPOT. TB and TST in detecting active tuberculosis in patients with rheumatic immune diseases: a fully matched comparative study[J/OL]. BMC Infect Dis, 2025, 25(1): 1121[2024-09-24]. https://pubmed.ncbi.nlm.nih.gov/40993510/. DOI: 10.1186/s12879-025-11331-5. |
| 52. | Li X, Wang J, Yang Z, et al. Diagnostic values of peripheral blood T-cell spot of tuberculosis assay (T-SPOT. TB) and magnetic resonance imaging for osteoarticular tuberculosis: a case-control study[J]. Aging (Albany NY), 2021, 13(7): 9693-9703. DOI: 10.18632/aging.202720. |
| 53. | Luo Y, Tan Y, Yu J, et al. The performance of pleural fluid T-SPOT. TB assay for diagnosing Tuberculous pleurisy in China: a two-center prospective cohort study[J/OL]. Front Cell Infect Microbiol, 2019, 9: 10[2019-01-30]. https://pubmed.ncbi.nlm.nih.gov/30761274/. DOI: 10.3389/fcimb.2019.00010. |
| 54. | Putera I, Schrijver B, Kolijn PM, et al. A serum B-lymphocyte activation signature is a key distinguishing feature of the immune response in sarcoidosis compared to tuberculosis[J/OL]. Commun Biol, 2024. 7(1): 1114[2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39256610/. DOI: 10.1038/s42003-024-06822-1. |
| 55. | Funaguma S, Iida A, Saito Y, et al. Retrotrans-genomics identifies aberrant THE1B endogenous retrovirus fusion transcripts in the pathogenesis of sarcoidosis[J/OL]. Nat Commun, 2025, 16(1): 1318[2025-02-07]. https://pubmed.ncbi.nlm.nih.gov/39920152/. DOI: 10.1038/s41467-025-56567-6. |
| 56. | Cummings MJ, Lutwama JJ, Owor N, et al. Unsupervised classification of the host response identifies dominant pathobiological signatures of sepsis in Sub-Saharan Africa[J]. Am J Respir Crit Care Med, 2025, 211(3): 357-369. DOI: 10.1164/rccm.202407-1394OC. |
| 57. | Zhang L, Rojas-Carabali W, Choo SS, et al. Validation of the online collaborative ocular Tuberculosis study calculator for Tubercular uveitis[J]. JAMA Ophthalmol, 2024, 142(12): 1140-1148. DOI: 10.1001/jamaophthalmol.2024.4567. |
| 58. | Adankwah E, Lundtoft C, Güler A, et al. Two-hit in vitro T-cell stimulation detects mycobacterium tuberculosis Infection in QuantiFERON negative Tuberculosis patients and healthy contacts from Ghana[J/OL]. Front Immunol, 2019, 10: 1518[2019-07-03]. https://pubmed.ncbi.nlm.nih.gov/31333654/. DOI: 10.3389/fimmu.2019.01518. |
| 59. | Wang F, Hou HY, Wu SJ, et al. Using the TBAg/PHA ratio in the T-SPOT(?). TB assay to distinguish TB disease from LTBI in an endemic area[J]. Int J Tuberc Lung Dis, 2016, 20(4): 487-493. DOI: 10.5588/ijtld.15.0756. |
| 60. | Luo Y, Tang G, Lin Q, et al. Combination of mean spot sizes of ESAT-6 spot-forming cells and modified tuberculosis-specific antigen/phytohemagglutinin ratio of T-SPOT. TB assay in distinguishing between active tuberculosis and latent tuberculosis infection[J]. J Infect, 2020, 81(1): 81-89. DOI: 10.1016/j.jinf.2020.04.038. |
| 61. | Luo Y, Xue Y, Liu W, et al. Convolutional neural network based on T-SPOT. TB assay promoting the discrimination between active tuberculosis and latent tuberculosis infection[J/OL]. Diagn Microbiol Infect Dis, 2023, 105(3): 115892[2023-01-06]. https://pubmed.ncbi.nlm.nih.gov/36702072/. DOI: 10.1016/j.diagmicrobio.2023.115892. |
| 62. | Shangguan Y, Fang H, Wang S, et al. Risk factors for negative T-SPOT. TB assay results in patients with confirmed active tuberculosis: a retrospective study[J]. J Infect Dev Ctries, 2020, 14(11): 1288-1295. DOI: 10.3855/jidc.12063. |
| 63. | Qin H, Wang Y, Huang L, et al. Efficacy and risk factors of interferon-gamma release assays among HIV-positive individuals[J/OL]. Int J Environ Res Public Health, 2023, 20(5): 4556[2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36901567/. DOI: 10.3390/ijerph20054556. |
| 64. | Sudharshan S, Kaleemunnisha S, Banu AA, et al. Ocular lesions in 1, 000 consecutive HIV-positive patients in India: a long-term study[J/OL]. J Ophthalmic Inflamm Infect, 2013, 3(1): 2[2013-01-03]. https://pubmed.ncbi.nlm.nih.gov/23514612/. DOI: 10.1186/1869-5760-3-2. |
| 65. | Babu RB, Sudharshan S, Kumarasamy N, et al. Ocular tuberculosis in acquired immunodeficiency syndrome[J]. Am J Ophthalmol, 2006, 142(3): 413-418. DOI: 10.1016/j.ajo.2006.03.062. |
| 66. | Testi I, Agrawal R, Mehta S, et al. Ocular tuberculosis: where are we today?[J]. Indian J Ophthalmol, 2020, 68(9): 1808-1817. DOI: 10.4103/ijo.IJO_1451_20. |
| 67. | Pradeep S, Thatikonda D, Nair N, et al. Tubercular panophthalmitis in a patient with human immunodeficiency virus infection: Proven clinicopathologically and by molecular diagnostic tests[J]. Indian J Ophthalmol, 2020, 68(9): 2045-2047. DOI: 10.4103/ijo.IJO_1190_20. |
| 68. | Xu Y, Zhang Q, Chen Z, et al. Impact of immune checkpoint inhibitors (ICIs) therapy on interferon-γ release assay (IGRA) and diagnostic value in non-small cell lung cancer (NSCLC) patients[J/OL]. BMC Pulm Med, 2024. 24(1): 174[2024-04-12]. https://pubmed.ncbi.nlm.nih.gov/38609918/. DOI: 10.1186/s12890-024-02980-4. |
| 69. | Skouvig Pedersen O, Sperling S, Koch A, et al. Evaluating stratified T-SPOT. TB results for diagnostic accuracy in tuberculosis disease: a retrospective cohort study with sensitivities, specificities, and predictive values[J]. Clin Microbiol Infect, 2025, 31(5): 808-817. DOI: 10.1016/j.cmi.2025.01.002. |
| 70. | Wang X, Li M, Liu G, et al. Using TBAg/PHA ratio for monitoring TB treatment: a prospective multicenter study[J/OL]. J Clin Med, 2022, 11(13): 3780[2022-06-29]. https://pubmed.ncbi.nlm.nih.gov/35807065/. DOI: 10.3390/jcm11133780. |
| 71. | Wang H, Wang S, Xu L, et al. The application of T. SPOT-TB assay for early diagnosis of active Tuberculosis in chronic kidney disease patients receiving immunosuppressive treatment[J]. J Invest Surg, 2020, 33(9): 853-858. DOI: 10.1080/08941939.2019.1566417. |
| 72. | Chung CY, Li KKW. The efficacy of latent tuberculosis treatment for immunocompetent uveitis patients with a positive T-SPOT. TB test: 6-year experience in a tuberculosis endemic region[J]. Int Ophthalmol, 2018, 38(6): 2273-2282. DOI: 10.1007/s10792-017-0716-y. |
| 73. | Liu S, Wu M, Ertai A, et al. Factors associated with differential T cell responses to antigens ESAT-6 and CFP-10 in pulmonary tuberculosis patients[J/OL]. Medicine (Baltimore), 2021, 100(8): e24615[2021-02-26]. https://pubmed.ncbi.nlm.nih.gov/33663071/. DOI: 10.1097/MD.0000000000024615. |
| 74. | Fernández-Zamora Y, Finamor LP, Silva LMP, et al. Role of interferon-gamma release assay for the diagnosis and clinical follow up in ocular Tuberculosis[J]. Ocul Immunol Inflamm, 2023, 31(2): 304-311. DOI: 10.1080/09273948.2022.2027459. |
| 75. | Almogahed AA, Youssef MM, Salaheldin Abdelaziz M, et al. Comparison between Beh?et's uveitis patients with immunologically positive and immunologically negative Tuberculosis test[J]. Ocul Immunol Inflamm, 2025, 33(8): 1523-1533. DOI: 10.1080/09273948.2025.2509717. |
| 76. | Sweeney MI, Carranza CE, Tobin DM. Understanding Mycobacterium tuberculosis through its genomic diversity and evolution[J/OL]. PLoS Pathog, 2025, 21(2): e1012956[2025-02-28]. https://pubmed.ncbi.nlm.nih.gov/40019877/. DOI: 10.1371/journal.ppat.1012956. |
| 77. | Grote A. INDELible impact: how structural variants drive virulence and resistance[J]. Cell Host Microbe, 2024, 32(11): 1882-1883. DOI: 10.1016/j.chom.2024.10.007. |
| 78. | Ghodousi A, Cannas A, Tagliani E, et al. Comprehensive whole genome sequencing dataset of mycobacterium tuberculosis strains collected across Italy[J/OL]. Sci Data, 2025, 12(1): 624[2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/40234438/. DOI: 10.1038/s41597-025-04966-1. |
| 79. | Sharma D, Dhuriya YK, Deo N, et al. Repurposing and revival of the drugs: a new approach to combat the drug resistant Tuberculosis[J/OL]. Front Microbiol, 2017, 8: 2452[2017-12-11]. https://pubmed.ncbi.nlm.nih.gov/29321768/. DOI: 10.3389/fmicb.2017.02452. |
| 80. | Wahan SK, Bhargava G, Chawla V, et al. Unlocking InhA: novel approaches to inhibit Mycobacterium tuberculosis[J/OL]. Bioorg Chem, 2024, 146: 107250[2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/38460337/. DOI: 10.1016/j.bioorg.2024.107250. |
| 81. | Palani J, Cifuentes Gonzalez C, Patnaik G, et al. Validation of the COTS calculator for Tubercular uveitis: predictive performance and diagnostic utility in an Indian cohort[J]. Ocul Immunol Inflamm, 2025, 33(8): 1634-1642. DOI: 10.1080/09273948.2025.2517309. |
- 1. Pai M, Behr MA, Dowdy D, et al. Tuberculosis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16076[2016-10-27]. https://pubmed.ncbi.nlm.nih.gov/27784885/. DOI: 10.1038/nrdp.2016.76.
- 2. Li J, Zhao M, Huang W, et al. Clinical characteristics and genomic epidemiological survey of tuberculosis in Wuzhou, China, 2022[J/OL]. Microbiol Spectr, 2025, 13(5): e0247424[2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/40207933/. DOI: 10.1128/spectrum.02474-24.
- 3. Flynn JL, Chan J. Immunology of tuberculosis[J]. Annu Rev Immunol, 2001, 19: 93-129. DOI: 10.1146/annurev.immunol.19.1.93.
- 4. Gupta A, Sharma A, Bansal R, et al. Classification of intraocular tuberculosis[J]. Ocul Immunol Inflamm, 2015, 23(1): 7-13. DOI: 10.3109/09273948.2014.967358.
- 5. Gupta A, Bansal R, Gupta V, et al. Ocular signs predictive of tubercular uveitis[J]. Am J Ophthalmol, 2010, 149(4): 562-570. DOI: 10.1016/j.ajo.2009.11.020.
- 6. Gupta A, Gupta V, Arora S, et al. PCR-positive tubercular retinal vasculitis: clinical characteristics and management[J]. Retina, 2001, 21(5): 435-444. DOI: 10.1097/00006982-200110000-00004.
- 7. Betzler BK, Putera I, Testi I, et al. Anti-tubercular therapy in the treatment of tubercular uveitis: a systematic review and meta-analysis[J]. Surv Ophthalmol, 2023, 68(2): 241-256. DOI: 10.1016/j.survophthal.2022.10.001.
- 8. Sulaiman II, Bani Saad MA, Bani-Saad AA, et al. Challenges and insights in the diagnosis and management of orbital tuberculosis: a systematic review of 113 cases[J/OL]. Cureus, 2024, 16(9): e68976[2024-09-09]. https://pubmed.ncbi.nlm.nih.gov/39385881/. DOI: 10.7759/cureus.68976.
- 9. Agnaou A, Abderrahim H, Tlemcani Y, et al. Pediatric ocular tuberculosis: epidemiological and clinical profile and particular issues regarding treatment[J/OL]. J Fr Ophtalmol, 2025, 48(7): 104586[2025-07-23]. https://pubmed.ncbi.nlm.nih.gov/40706173/. DOI: 10.1016/j.jfo.2025.104586.
- 10. Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review[J]. Lancet Infect Dis, 2006, 6(9): 570-581. DOI: 10.1016/S1473-3099(06)70578-3.
- 11. Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: from probes to genomes[J]. Infect Genet Evol, 2019, 72: 93-112. DOI: 10.1016/j.meegid.2018.11.021.
- 12. Gong X, He Y, Zhou K, et al. Efficacy of Xpert in tuberculosis diagnosis based on various specimens: a systematic review and meta-analysis[J/OL]. Front Cell Infect Microbiol, 2023, 13: 1149741[2023-05-02]. https://pubmed.ncbi.nlm.nih.gov/37201118/. DOI: 10.3389/fcimb.2023.1149741.
- 13. Trad S, Bodaghi B, Saadoun D. Update on immunological test (Quantiferon-TB Gold) contribution in the management of tuberculosis-related ocular inflammation[J]. Ocul Immunol Inflamm, 2018, 26(8): 1192-1199. DOI: 10.1080/09273948.2017.1332232.
- 14. Ang M, Chee SP. Controversies in ocular tuberculosis[J]. Br J Ophthalmol, 2017, 101(1): 6-9. DOI: 10.1136/bjophthalmol-2016-309531.
- 15. Arend SM, Geluk A, van Meijgaarden KE, et al. Antigenic equivalence of human T-cell responses to Mycobacterium tuberculosis-specific RD1-encoded protein antigens ESAT-6 and culture filtrate protein 10 and to mixtures of synthetic peptides[J]. Infect Immun, 2000, 68(6): 3314-3321. DOI: 10.1128/IAI.68.6.3314-3321.2000.
- 16. Renshaw PS, Panagiotidou P, Whelan A, et al. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1: 1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence[J]. J Biol Chem, 2002, 277(24): 21598-21603. DOI: 10.1074/jbc.M201625200.
- 17. Guinn KM, Hickey MJ, Mathur SK, et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis[J]. Mol Microbiol, 2004, 51(2): 359-370. DOI: 10.1046/j.1365-2958.2003.03844.x.
- 18. Lu X, Li C, Li W, et al. Use of Interferon-γ release assay for the diagnosis of female genital tuberculosis in Northwest China[J/OL]. J Clin Lab Anal, 2019. 33(1): e22621[2018-07-13]. https://pubmed.ncbi.nlm.nih.gov/30006939/. DOI: 10.1002/jcla.22621.
- 19. Sedegah M. The ex vivo IFN-γ enzyme-linked immunospot (ELISpot) assay[J]. Methods Mol Biol, 2015, 1325: 197-205. DOI: 10.1007/978-1-4939-2815-6_16.
- 20. Tagirasa R, Parmar S, Barik MR, et al. Autoreactive T cells in immunopathogenesis of TB-associated uveitis[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5682-5691. DOI: 10.1167/iovs.17-22462.
- 21. Sharma RK, Gupta A, Kamal S, et al. Role of regulatory T cells in Tubercular uveitis[J]. Ocul Immunol Inflamm, 2018, 26(1): 27-36. DOI: 10.1080/09273948.2016.1196711.
- 22. Setiabudiawan TP, Apriani L, Verrall AJ, et al. Immune correlates of early clearance of Mycobacterium tuberculosis among tuberculosis household contacts in indonesia[J/OL]. Nat Commun, 2025, 16(1): 309[2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/39747050/. DOI: 10.1038/s41467-024-55501-6.
- 23. Kimura M, Umekita K, Iwao C, et al. Antiviral immune response against HTLV-1 invalidates T-SPOT. TB(?) results in patients with HTLV-1-positive rheumatic diseases[J/OL]. Front Immunol, 2024, 15: 1480506[2024-10-29]. https://pubmed.ncbi.nlm.nih.gov/39534598/. DOI: 10.3389/fimmu.2024.1480506.
- 24. Voigt V, Wikstrom ME, Kezic JM, et al. Ocular antigen does not cause disease unless presented in the context of inflammation[J/OL]. Sci Rep, 2017, 7(1): 14226[2017-10-27]. https://pubmed.ncbi.nlm.nih.gov/29079770/. DOI: 10.1038/s41598-017-14618-z.
- 25. Agrawal R, Testi I, Rousselot A, et al. Insights into the molecular pathogenesis of ocular tuberculosis[J/OL]. Tuberculosis (Edinb), 2021, 126: 102018[2020-11-12]. https://pubmed.ncbi.nlm.nih.gov/33202350/. DOI: 10.1016/j.tube.2020.102018.
- 26. Putera I, Schrijver B, Ten Berge JCEM, et al. The immune response in tubercular uveitis and its implications for treatment: from anti-tubercular treatment to host-directed therapies[J/OL]. Prog Retin Eye Res, 2023, 95: 101189[2023-05-25]. https://pubmed.ncbi.nlm.nih.gov/37236420/. DOI: 10.1016/j.preteyeres.2023.101189.
- 27. Putera I, Swagemakers SMA, Nagtzaam NMA, et al. Mycobacterium tuberculosis infection of retinal endothelial cells induces interferon signaling activation: insights Into Tubercular retinal vasculitis[J/OL]. Invest Ophthalmol Vis Sci, 2025, 66(9): 48[2025-07-01]. https://pubmed.ncbi.nlm.nih.gov/40668059/. DOI: 10.1167/iovs.66.9.48.
- 28. Putera I, Quiros JDV, Rombach SM, et al. Artificial intelligence-based uveitis diagnosis through retinal vasculature analysis: a paradigm shift in ocular Tuberculosis[J]. Ophthalmol Ther, 2025, 14(4): 717-732. DOI: 10.1007/s40123-025-01103-4.
- 29. Diedrich CR, O'Hern J, Gutierrez MG, et al. Relationship between HIV coinfection, interleukin 10 production, and mycobacterium tuberculosis in human lymph node granulomas[J]. J Infect Dis, 2016, 214(9): 1309-1318. DOI: 10.1093/infdis/jiw313.
- 30. Hakim A, Komaratih E, Zuhria I. Pediatric ocular tuberculosis: a case report of complex clinical manifestations and its successful management[J/OL]. Pan Afr Med J, 2024, 49: 68[2024-11-08]. https://pubmed.ncbi.nlm.nih.gov/39958567/. DOI: 10.11604/pamj.2024.49.68.45595.
- 31. Liu C, Wang X, Cao X. Research trends of ocular Tuberculosis: a bibliometric analysis[J]. Ocul Immunol Inflamm, 2025, 33(7): 1188-1200. DOI: 10.1080/09273948.2024.2437124.
- 32. Whitworth HS, Badhan A, Boakye AA, et al. Clinical utility of existing and second-generation interferon-γ release assays for diagnostic evaluation of tuberculosis: an observational cohort study[J]. Lancet Infect Dis, 2019, 19(2): 193-202. DOI: 10.1016/S1473-3099(18)30613-3.
- 33. Aishwarya R, Maheshwary D, Kv L, et al. Performance of current diagnostic tools in detecting latent Tuberculosis among healthcare workers: a systematic review[J/OL]. Cureus, 2024, 16(10): e70621[2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/39483545/. DOI: 10.7759/cureus.70621.
- 34. Zhong H, Wu H, Yu Z, et al. Clinical evaluation of the T-SPOT. TB test for detection of tuberculosis infection in northeastern Guangdong Province, China[J/OL]. J Int Med Res, 2020, 48(5): 300060520923534[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/32475200/. DOI: 10.1177/0300060520923534.
- 35. Feng JY, Huang SF, Lee MC, et al. Characteristics of IFN-γ responses in IGRA among pulmonary TB suspects in a TB-endemic area[J]. Diagn Microbiol Infect Dis, 2013, 77(1): 46-52. DOI: 10.1016/j.diagmicrobio.2013.05.020.
- 36. Ling DI, Pai M, Davids V, et al. Are interferon-γ release assays useful for diagnosing active tuberculosis in a high-burden setting?[J]. Eur Respir J, 2011, 38(3): 649-656. DOI: 10.1183/09031936.00181610.
- 37. Ma Y, Li R, Shen J, et al. Clinical effect of T-SPOT. TB test for the diagnosis of tuberculosis[J/OL]. BMC Infect Dis, 2019, 19(1): 993[2019-11-21]. https://pubmed.ncbi.nlm.nih.gov/31752713/. DOI: 10.1186/s12879-019-4597-8.
- 38. Zhang L, Shi X, Zhang Y, et al. Analysis of factors influencing diagnostic accuracy of T-SPOT. TB for active Tuberculosis in clinical practice[J/OL]. Sci Rep, 2017, 7(1): 7764[2017-08-10]. https://pubmed.ncbi.nlm.nih.gov/28798488/. DOI: 10.1038/s41598-017-07785-6.
- 39. Cheng XH, Bian SN, Zhang YQ, et al. Diagnostic value of T-cell interferon-γ release assays on synovial fluid for articular Tuberculosis: a pilot study[J]. Chin Med J (Engl), 2016, 129(10): 1171-1178. DOI: 10.4103/0366-6999.181958.
- 40. Pan L, Liu F, Zhang J, et al. Interferon-gamma release assay performance of cerebrospinal fluid and peripheral blood in Tuberculous meningitis in China[J/OL]. Biomed Res Int, 2017, 2017: 8198505[2017-02-20]. https://pubmed.ncbi.nlm.nih.gov/28316991/. DOI: 10.1155/2017/8198505.
- 41. Putera I, Rothova A, La Distia Nora R. Comparison of uveitis manifestations in patients with active systemic tuberculosis and those with positive interferon-gamma release assay without active disease[J]. Eye (Lond), 2025, 39(9): 1772-1780. DOI: 10.1038/s41433-025-03751-z.
- 42. Choudhary Balla S, Ali MH, et al. Systemic and ocular outcomes in TB-immunoreactive patients receiving immunomodulatory therapy for non-infectious uveitis: a case-control study[J]. Br J Ophthalmol, 2024, 109(1): 41-44. DOI: 10.1136/bjo-2024-325625.
- 43. Zhong Z, Su G, Zhou Q, et al. Tuberculosis exposure with risk of Beh?et disease among patients with uveitis[J]. JAMA Ophthalmol, 2021, 139(4): 415-422. DOI: 10.1001/jamaophthalmol.2020.6985.
- 44. Sato R, Takasaka N, Hosaka Y, et al. Association between the extent of intrapulmonary spread on chest CT and false-negative results of T-SPOT. TB in pulmonary tuberculosis: a retrospective study[J/OL]. BMC Infect Dis, 2025, 25(1): 391[2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/40114064/. DOI: 10.1186/s12879-025-10777-x.
- 45. Batista MV, Sassine J, Khawaja F, et al. The utility of interferon-γ release assays in the diagnosis of Tuberculosis in patients with cancer[J/OL]. Transpl Infect Dis, 2025, 27(2): e14428[2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/39731624/. DOI: 10.1111/tid.14428.
- 46. Zhong J, Li Y, Chen Y, et al. Systemic vasculitis with latent tuberculosis infection and associated factors: a cross-sectional multicenter study[J]. Clin Rheumatol, 2025, 44(3): 1269-1277. DOI: 10.1007/s10067-024-07279-7.
- 47. Bosco MJ, Hou H, Mao L, et al. The performance of the TBAg/PHA ratio in the diagnosis of active TB disease in immunocompromised patients[J]. Int J Infect Dis, 2017, 59: 55-60. DOI: 10.1016/j.ijid.2017.03.025.
- 48. Liu Y, Yao L, Wang F, et al. The TBAg/PHA ratio in T-SPOT. TB assay has high prospective value in the diagnosis of active tuberculosis: a multicenter study in China[J/OL]. Respir Res, 2021, 22(1): 165[2021-06-01]. https://pubmed.ncbi.nlm.nih.gov/34074288/. DOI: 10.1186/s12931-021-01753-5.
- 49. Sun Y, Yao X, Ni Y, et al. Diagnostic efficacy of T-SPOT. TB for active Tuberculosis in adult: a retrospective study[J]. Infect Drug Resist, 2022, 15: 7077-7093. DOI: 10.2147/IDR.S388568.
- 50. Yang Q, Zhang C, Ruan Q, et al. Higher T-SPOT. TB threshold may aid in diagnosing active tuberculosis?: a real-world clinical practice in a general hospital[J]. Clin Chim Acta, 2020, 509: 60-66. DOI: 10.1016/j.cca.2020.06.005.
- 51. Wang H, Li Y, Zhang L, et al. Diagnostic accuracy of T-SPOT. TB and TST in detecting active tuberculosis in patients with rheumatic immune diseases: a fully matched comparative study[J/OL]. BMC Infect Dis, 2025, 25(1): 1121[2024-09-24]. https://pubmed.ncbi.nlm.nih.gov/40993510/. DOI: 10.1186/s12879-025-11331-5.
- 52. Li X, Wang J, Yang Z, et al. Diagnostic values of peripheral blood T-cell spot of tuberculosis assay (T-SPOT. TB) and magnetic resonance imaging for osteoarticular tuberculosis: a case-control study[J]. Aging (Albany NY), 2021, 13(7): 9693-9703. DOI: 10.18632/aging.202720.
- 53. Luo Y, Tan Y, Yu J, et al. The performance of pleural fluid T-SPOT. TB assay for diagnosing Tuberculous pleurisy in China: a two-center prospective cohort study[J/OL]. Front Cell Infect Microbiol, 2019, 9: 10[2019-01-30]. https://pubmed.ncbi.nlm.nih.gov/30761274/. DOI: 10.3389/fcimb.2019.00010.
- 54. Putera I, Schrijver B, Kolijn PM, et al. A serum B-lymphocyte activation signature is a key distinguishing feature of the immune response in sarcoidosis compared to tuberculosis[J/OL]. Commun Biol, 2024. 7(1): 1114[2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39256610/. DOI: 10.1038/s42003-024-06822-1.
- 55. Funaguma S, Iida A, Saito Y, et al. Retrotrans-genomics identifies aberrant THE1B endogenous retrovirus fusion transcripts in the pathogenesis of sarcoidosis[J/OL]. Nat Commun, 2025, 16(1): 1318[2025-02-07]. https://pubmed.ncbi.nlm.nih.gov/39920152/. DOI: 10.1038/s41467-025-56567-6.
- 56. Cummings MJ, Lutwama JJ, Owor N, et al. Unsupervised classification of the host response identifies dominant pathobiological signatures of sepsis in Sub-Saharan Africa[J]. Am J Respir Crit Care Med, 2025, 211(3): 357-369. DOI: 10.1164/rccm.202407-1394OC.
- 57. Zhang L, Rojas-Carabali W, Choo SS, et al. Validation of the online collaborative ocular Tuberculosis study calculator for Tubercular uveitis[J]. JAMA Ophthalmol, 2024, 142(12): 1140-1148. DOI: 10.1001/jamaophthalmol.2024.4567.
- 58. Adankwah E, Lundtoft C, Güler A, et al. Two-hit in vitro T-cell stimulation detects mycobacterium tuberculosis Infection in QuantiFERON negative Tuberculosis patients and healthy contacts from Ghana[J/OL]. Front Immunol, 2019, 10: 1518[2019-07-03]. https://pubmed.ncbi.nlm.nih.gov/31333654/. DOI: 10.3389/fimmu.2019.01518.
- 59. Wang F, Hou HY, Wu SJ, et al. Using the TBAg/PHA ratio in the T-SPOT(?). TB assay to distinguish TB disease from LTBI in an endemic area[J]. Int J Tuberc Lung Dis, 2016, 20(4): 487-493. DOI: 10.5588/ijtld.15.0756.
- 60. Luo Y, Tang G, Lin Q, et al. Combination of mean spot sizes of ESAT-6 spot-forming cells and modified tuberculosis-specific antigen/phytohemagglutinin ratio of T-SPOT. TB assay in distinguishing between active tuberculosis and latent tuberculosis infection[J]. J Infect, 2020, 81(1): 81-89. DOI: 10.1016/j.jinf.2020.04.038.
- 61. Luo Y, Xue Y, Liu W, et al. Convolutional neural network based on T-SPOT. TB assay promoting the discrimination between active tuberculosis and latent tuberculosis infection[J/OL]. Diagn Microbiol Infect Dis, 2023, 105(3): 115892[2023-01-06]. https://pubmed.ncbi.nlm.nih.gov/36702072/. DOI: 10.1016/j.diagmicrobio.2023.115892.
- 62. Shangguan Y, Fang H, Wang S, et al. Risk factors for negative T-SPOT. TB assay results in patients with confirmed active tuberculosis: a retrospective study[J]. J Infect Dev Ctries, 2020, 14(11): 1288-1295. DOI: 10.3855/jidc.12063.
- 63. Qin H, Wang Y, Huang L, et al. Efficacy and risk factors of interferon-gamma release assays among HIV-positive individuals[J/OL]. Int J Environ Res Public Health, 2023, 20(5): 4556[2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36901567/. DOI: 10.3390/ijerph20054556.
- 64. Sudharshan S, Kaleemunnisha S, Banu AA, et al. Ocular lesions in 1, 000 consecutive HIV-positive patients in India: a long-term study[J/OL]. J Ophthalmic Inflamm Infect, 2013, 3(1): 2[2013-01-03]. https://pubmed.ncbi.nlm.nih.gov/23514612/. DOI: 10.1186/1869-5760-3-2.
- 65. Babu RB, Sudharshan S, Kumarasamy N, et al. Ocular tuberculosis in acquired immunodeficiency syndrome[J]. Am J Ophthalmol, 2006, 142(3): 413-418. DOI: 10.1016/j.ajo.2006.03.062.
- 66. Testi I, Agrawal R, Mehta S, et al. Ocular tuberculosis: where are we today?[J]. Indian J Ophthalmol, 2020, 68(9): 1808-1817. DOI: 10.4103/ijo.IJO_1451_20.
- 67. Pradeep S, Thatikonda D, Nair N, et al. Tubercular panophthalmitis in a patient with human immunodeficiency virus infection: Proven clinicopathologically and by molecular diagnostic tests[J]. Indian J Ophthalmol, 2020, 68(9): 2045-2047. DOI: 10.4103/ijo.IJO_1190_20.
- 68. Xu Y, Zhang Q, Chen Z, et al. Impact of immune checkpoint inhibitors (ICIs) therapy on interferon-γ release assay (IGRA) and diagnostic value in non-small cell lung cancer (NSCLC) patients[J/OL]. BMC Pulm Med, 2024. 24(1): 174[2024-04-12]. https://pubmed.ncbi.nlm.nih.gov/38609918/. DOI: 10.1186/s12890-024-02980-4.
- 69. Skouvig Pedersen O, Sperling S, Koch A, et al. Evaluating stratified T-SPOT. TB results for diagnostic accuracy in tuberculosis disease: a retrospective cohort study with sensitivities, specificities, and predictive values[J]. Clin Microbiol Infect, 2025, 31(5): 808-817. DOI: 10.1016/j.cmi.2025.01.002.
- 70. Wang X, Li M, Liu G, et al. Using TBAg/PHA ratio for monitoring TB treatment: a prospective multicenter study[J/OL]. J Clin Med, 2022, 11(13): 3780[2022-06-29]. https://pubmed.ncbi.nlm.nih.gov/35807065/. DOI: 10.3390/jcm11133780.
- 71. Wang H, Wang S, Xu L, et al. The application of T. SPOT-TB assay for early diagnosis of active Tuberculosis in chronic kidney disease patients receiving immunosuppressive treatment[J]. J Invest Surg, 2020, 33(9): 853-858. DOI: 10.1080/08941939.2019.1566417.
- 72. Chung CY, Li KKW. The efficacy of latent tuberculosis treatment for immunocompetent uveitis patients with a positive T-SPOT. TB test: 6-year experience in a tuberculosis endemic region[J]. Int Ophthalmol, 2018, 38(6): 2273-2282. DOI: 10.1007/s10792-017-0716-y.
- 73. Liu S, Wu M, Ertai A, et al. Factors associated with differential T cell responses to antigens ESAT-6 and CFP-10 in pulmonary tuberculosis patients[J/OL]. Medicine (Baltimore), 2021, 100(8): e24615[2021-02-26]. https://pubmed.ncbi.nlm.nih.gov/33663071/. DOI: 10.1097/MD.0000000000024615.
- 74. Fernández-Zamora Y, Finamor LP, Silva LMP, et al. Role of interferon-gamma release assay for the diagnosis and clinical follow up in ocular Tuberculosis[J]. Ocul Immunol Inflamm, 2023, 31(2): 304-311. DOI: 10.1080/09273948.2022.2027459.
- 75. Almogahed AA, Youssef MM, Salaheldin Abdelaziz M, et al. Comparison between Beh?et's uveitis patients with immunologically positive and immunologically negative Tuberculosis test[J]. Ocul Immunol Inflamm, 2025, 33(8): 1523-1533. DOI: 10.1080/09273948.2025.2509717.
- 76. Sweeney MI, Carranza CE, Tobin DM. Understanding Mycobacterium tuberculosis through its genomic diversity and evolution[J/OL]. PLoS Pathog, 2025, 21(2): e1012956[2025-02-28]. https://pubmed.ncbi.nlm.nih.gov/40019877/. DOI: 10.1371/journal.ppat.1012956.
- 77. Grote A. INDELible impact: how structural variants drive virulence and resistance[J]. Cell Host Microbe, 2024, 32(11): 1882-1883. DOI: 10.1016/j.chom.2024.10.007.
- 78. Ghodousi A, Cannas A, Tagliani E, et al. Comprehensive whole genome sequencing dataset of mycobacterium tuberculosis strains collected across Italy[J/OL]. Sci Data, 2025, 12(1): 624[2025-04-25]. https://pubmed.ncbi.nlm.nih.gov/40234438/. DOI: 10.1038/s41597-025-04966-1.
- 79. Sharma D, Dhuriya YK, Deo N, et al. Repurposing and revival of the drugs: a new approach to combat the drug resistant Tuberculosis[J/OL]. Front Microbiol, 2017, 8: 2452[2017-12-11]. https://pubmed.ncbi.nlm.nih.gov/29321768/. DOI: 10.3389/fmicb.2017.02452.
- 80. Wahan SK, Bhargava G, Chawla V, et al. Unlocking InhA: novel approaches to inhibit Mycobacterium tuberculosis[J/OL]. Bioorg Chem, 2024, 146: 107250[2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/38460337/. DOI: 10.1016/j.bioorg.2024.107250.
- 81. Palani J, Cifuentes Gonzalez C, Patnaik G, et al. Validation of the COTS calculator for Tubercular uveitis: predictive performance and diagnostic utility in an Indian cohort[J]. Ocul Immunol Inflamm, 2025, 33(8): 1634-1642. DOI: 10.1080/09273948.2025.2517309.

