- School of Medicine, Qingdao Huanghai University, Qingdao 266427, China;
With the intensification of population aging and the popularity of electronic products, the incidence of retinal diseases continues to rise, and their complex pathogenesis seriously restricts the development of effective treatment strategies. Zebrafish has become an important model animal for ophthalmic research, especially for retinal disease research, due to its unique biological advantages. This article aims to systematically review the current application status and prospects of zebrafish models in various retinal disease research, broaden future research ideas, and provide new perspectives for the prevention and treatment of retinal diseases. This article first elaborates on the unique advantages of zebrafish as a model animal, including easy feeding, transparent embryos, rapid development of the visual system, high homology with human genes, and strong retinal regeneration ability. Subsequently, we reviewed the research and application progress of zebrafish models, focusing on various hereditary and non-hereditary retinal diseases, including diabetic retinopathy, retinopathy of prematurity, retinitis pigmentosa, rod-cone cell dystrophy, Leber congenital amaurosis, congenital static night blindness, choroidal deletion, and Budd Beeder syndrome. Studies have confirmed that a large number of zebrafish models simulating the pathological characteristics of human retinal diseases have been constructed successfully using genetic techniques such as CRISPR/Cas9 gene editing, TALEN targeted modification, chemical induction, and microinjection. These models not only effectively reproduce the clinical phenotype of retinal diseases but also play an irreplaceable role in elucidating the functions of pathogenic genes, revealing signal pathway disorders, and analyzing the mechanisms of cell death and regeneration. Additionally, the zebrafish model has shown great potential in drug screening and efficacy evaluation. These studies indicate that the zebrafish model is an ideal tool for in-depth analysis of the pathogenesis of retinal diseases, promoting precision medicine and new drug development, and has broad application prospects in the future.
Copyright ? the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
| 1. | Burton MJ, Ramke J, Marques AP, et al. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020[J/OL]. Lancet Glob Health, 2021, 9(4): e489-e551[2021-02-16]. https://pubmed.ncbi.nlm.nih.gov/33607016/. DOI: 10.1016/S2214-109X(20)30488-5. |
| 2. | 馮麗萍, 徐伊琳, 陳珣, 等. 斑馬魚視網膜微細結構及發育特征[J]. 解剖學報, 2024, 55(1): 105-112. DOI: 10.16098/j.issn.0529-1356.2024.01.015.Feng LP, Xv YL, Chen X, et al. Microstructure and developmental characteristics of zebrafish retina[J]. Acta Anatomica Sinica, 2024, 55(1): 105-112. DOI: 10.16098/j.issn.0529-1356.2024.01.015. |
| 3. | Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio)[J]. Nature, 1981, 291(5813): 293-296. DOI: https://doi.org/10.1038/291293a0. |
| 4. | 劉晨, 陳斌, 徐又佳. 斑馬魚疾病模型[J]. 中華骨質疏松和骨礦鹽疾病雜志, 2014, 7(3): 277-280. DOI: 10.3969/j.issn.1674-2591.2014.03.016.Liu C, Chen B, Xu YJ. Zebrafish as an animal model of human disease[J]. Chin J Osteoporos Bone Miner Res, 2014, 7(3): 277-280. DOI: 10.3969/j.issn.1674-2591.2014.03.016. |
| 5. | 劉延英. 斑馬魚模型在神經退行性疾病研究中的應用進展[J]. 中國實驗動物學報, 2023, 31(10): 1361-1367. DOI: 10.3969/j.issn.1005-4847.2023.10.014.Liu YY. Progress in the application of the zebrafish models in the study of neurodegenerative diseases[J]. Acta Laboratorium Animalis Scientia Sinica, 2023, 31(10): 1361-1367. DOI: 10.3969/j.issn.1005-4847.2023.10.014. |
| 6. | Fleisch VC, Neuhauss SC. Visual behavior in zebrafish[J]. zebrafish, 2006, 3(2): 191-201. DOI: 10.1089/zeb.2006.3.191. |
| 7. | Stella SL Jr, Geathers JS, Weber SR, et al. Neurodegeneration, Neuroprotection and Regeneration in the zebrafish retina[J/OL]. Cells, 2021, 10(3): 633[2021-03-12]. https://pubmed.ncbi.nlm.nih.gov/33809186/. DOI: 10.3390/cells10030633. |
| 8. | Malicki J, Pooranachandran N, Nikolaev A, et al. Analysis of the retina in the zebrafish model[J]. Methods Cell Biol, 2016, 134: 257-334. DOI: 10.1016/bs.mcb.2016.04.017. |
| 9. | Chhetri J, Jacobson G, Gueven N. zebrafish–on the move towards ophthalmological research[J]. Eye, 2014, 28(4): 367-380. DOI: 10.1038/eye.2014.19. |
| 10. | Fogerty J, Song P, Boyd P, et al. Notch inhibition promotes regeneration and immunosuppression supports cone survival in a zebrafish model of inherited retinal dystrophy[J]. J Neurosci, 2022, 42(26): 5144-5158. DOI: 10.1523/JNEUROSCI.0244-22.2022. |
| 11. | Sudhakaran G, Chandran A, Sreekutty AR, et al. Ophthalmic intervention of naringenin decreases vascular endothelial growth factor by counteracting oxidative stress and cellular damage in in vivo zebrafish[J/OL]. Molecules, 2023, 28(14): 5350[2023-07-12]. https://pubmed.ncbi.nlm.nih.gov/37513223/. DOI: 10.3390/molecules28145350. |
| 12. | Tanvir Z, Nelson RF, DeCicco-Skinner K, et al. Onemonth of hyperglycemia alters spectral responses of the zebrafish photopic ERG[J/OL]. Dis Model Mech, 2018, 11(10): dmm035220[2018-10-22]. https://pubmed.ncbi.nlm.nih.gov/30158110/. DOI: 10.1242/dmm.035220. |
| 13. | Ali Z, Mukwaya A, Biesemeier A, et al. Intussusceptive vascular remodeling precedes pathological neovascularization[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1402-1418. DOI: 10.1161/ATVBAHA.118.312190. |
| 14. | Wang S, Du S, Wang W, et al. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy[J/OL]. Biomed Pharmacother, 2020, 130: 110573[2020-07-31]. https://pubmed.ncbi.nlm.nih.gov/32745912/. DOI: 10.1016/j.biopha.2020.110573. |
| 15. | Lodd E, Wiggenhauser LM, Morgenstern J, et al. The combination of loss of glyoxalase1 and obesity results in hyperglycemia[J/OL]. JCI insight, 2019, 4(12): e126154[2019-06-20]. https://pubmed.ncbi.nlm.nih.gov/31217350/. DOI: 10.1172/jci.insight.126154. |
| 16. | Wu YC, Chang CY, Kao A, et al. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity[J/OL]. PLoS One, 2015, 10(5): e0126750[2015-05-15]. https://pubmed.ncbi.nlm.nih.gov/25978439/. DOI: 10.1371/journal.pone.0126750. |
| 17. | 劉敏. Norrin分泌和多聚異常導致視網膜血管病變的機制及診斷研究[D]. 成都: 電子科技大學, 2024.Liu M. Mechanism and diagnosis of retinal vasculopathy caused by abnormal secretionand multimerization of Norrin[D]. Chengdu: University of Electronic Science and Technology, 2024. |
| 18. | 劉希良. rpgra敲除導致斑馬魚視網膜色素變性的機制研究[D]. 武漢: 華中科技大學, 2021.Liu XL. Study on the mechanism of rpgra knockout leading to retinitis pigmentosa in zebrafish[D]. Wuhan: Huazhong University of Science and Technology, 2021. |
| 19. | Nash BM, Wright DC, Grigg JR, et al. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy[J]. Transl Pediatr, 2015, 4(2): 139-163. DOI: 10.3978/j.issn.2224-4336.2015.04.03. |
| 20. | Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations[J/OL]. Cold Spring Harb Perspect Med, 2014, 5(2): a017111[2014-10-16]. https://pubmed.ncbi.nlm.nih.gov/25324231/. DOI: 10.1101/cshperspect.a017111. |
| 21. | Perkins BD. zebrafish models of inherited retinal dystrophies[J]. J Transl Genet Genom, 2022, 6(1): 195-110. DOI: 10.20517/JTGG.2021.47. |
| 22. | 于珊珊. CERKL敲除導致斑馬魚感光細胞外節吞噬障礙, 引起視桿—視錐營養不良[D]. 武漢: 華中科技大學, 2017.Yu SS. CERKL knockdown leads to impaired phagocytosis of photoreceptor outer segments in zebrafish, causing rod cone dystrophy[D]. Wuhan: Huazhong University of Science and Technology, 2017. |
| 23. | Stemerdink M, Broekman S, Peters T, et al. Generationand characterization of a zebrafish model for ADGRV1-associated retinal dysfunction using CRISPR/Cas9 genome editing technology[J/OL]. Cells, 2023, 12(12): 1598[2023-06-10]. https://pubmed.ncbi.nlm.nih.gov/37371069/. DOI: 10.3390/CELLS12121598. |
| 24. | Liu F, Qin Y, Huang Y, et al. Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration[J/OL]. PLoS Genet, 2022, 18(3): e1009841[2022-03-04]. https://pubmed.ncbi.nlm.nih.gov/35245286/. DOI: 10.1371/JOURNAL.PGEN.1009841. |
| 25. | 林羽晨. Crb2a結構域在斑馬魚視網膜神經上皮細胞和晶狀體上皮細胞頂端黏附連接裝配中的調控機制研究[D]. 杭州: 浙江大學, 2020.Lin YC. Regulatory mechanism of crb2a domain in apical adherens junction assembly of zebrafish retinal neuroepithelial cells and lens epithelial cells[D]. Hangzhou: Zhejiang University, 2020. |
| 26. | 賈丹娜. TULP1同源基因敲除導致斑馬魚早發性視網膜色素變性[D]. 武漢: 華中科技大學, 2023.Jia DN. Tulp1 homologous gene knockout causes early-onset retinitis pigmentosa in zebrafish[D]. Wuhan: Huazhong University of Science and Technology, 2023. |
| 27. | 李井振. prpf31缺失導致視網膜發育缺陷及視網膜色素變性的機制研究[D]. 武漢: 華中科技大學, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002195.Li JZ. The mechanism of PRPF31 deletion causing retinal developmental defects and retinitis pigmentosa[D]. Wuhan: Huazhong University of Science and Technology, 2021. |
| 28. | 陳哲. 雙突變視紫紅質蛋白(Rho-R135G/G188R)轉基因斑馬魚視網膜色素變性模型的建立[D]. 北京: 北京協和醫學院, 2009.Chen Z. Establishment of a double mutant rhodopsin protein (rho-r135g/g188r) transgenic zebrafish model of retinitis pigmentosa[D]. Beijing: Peking Union Medical College, 2009. |
| 29. | 王曉光, 劉海軍, 張少弛, 等. 視網膜色素變性和視錐-視桿細胞營養不良患者的基因型及臨床表型分析[J]. 中華眼底病雜志, 2018, 34(6): 526-535. DOI: 10.3760/cma.j.issn.1005-1015.2018.06.002.Wang XG, Liu HJ, Zhang SC, et al. Genotype and clinical phenotype analysis in patientswith retinitis pigmentosa andcone rod dystrophy[J]. Chin J Ocul Fundus Dis, 2018, 34(6): 526-535. DOI: 10.3760/cma.j.issn.1005-1015.2018.06.002. |
| 30. | 任英華, 盛迅倫, 賈沁, 等. 視網膜色素變性和視錐-視桿細胞營養不良患者基因突變頻譜分析[J]. 國際眼科雜志, 2021, 21(10): 1803-1807. DOI: 10.3980/j.issn.1672-5123.2021.10.28.Ren YH, Sheng XL, Jia Q, et al. Spectrum analysis of gene mutations in retinitis pigmentosa and cone-rod dystrophy[J]. Int Eye Sci, 2021, 21(10): 1803-1807. DOI: 10.3980/j.issn.1672-5123.2021.10.28. |
| 31. | 周高慧. ATP1A3基因突變導致常染色體顯性視錐-視桿細胞營養不良[D]. 溫州: 溫州醫科大學, 2020.Zhou GH. Mutations in atp1a3 cause autosomal dominant cone rod dystrophy[D]. Wenzhou: Wenzhou Medical College, 2020. |
| 32. | Tsang SH, Sharma T. Progressive cone dystrophy and cone-Rod dystrophy (XL, AD, and AR)[J]. Adv Exp Med Biol, 2018, 1085: 53-60. DOI: 10.1007/978-3-319-95046-4_12. |
| 33. | Stearns G, Evangelista M, Fadool JM, et al. A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish[J]. J Neurosci, 2007, 27(50): 13866-13874. DOI: 10.1523/JNEUROSCI.3136-07.2007. |
| 34. | 陸兆靜. eys敲除導致斑馬魚視網膜變性的機制研究[D]. 武漢: 華中科技大學, 2017.Lu ZJ. Mechanism of eys knockdown leadingto retinal degeneration in zebrafish[D]. Wuhan: Huazhong University of Science and Technology, 2017. |
| 35. | Rainy N, Etzion T, Alon S, et al. Knockdownof unc119c results in visual impairment andearly-onset retinal dystrophy in zebrafish[J]. Biochem Biophys Res Commun, 2016, 473(4): 1211-1217. DOI: 10.1016/j.bbrc.2016.04.041. |
| 36. | den Hollander AI, Heckenlively JR, van den Born LI, et al. Leber congenital amaurosis and retinitis pigmentos with Coats-like exudative vasculopathy are associated with mutations inthe Crumbs Homologue 1 (CRB1) gene[J]. Am J Hum Genet, 2001, 69(1): 198-203. DOI: 10.1086/321263. |
| 37. | Freund CL, Gregory-Evans CY, Furukawa T, et al. Cone-rod dystrophy due to mutations in anovel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor[J]. Cell, 1997, 91(4): 543-553. DOI: 10.1016/S0092-8674(00)80440-7. |
| 38. | Freund CL, Wang QL, Chen S, et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis[J]. Nat Genet, 1998, 18(4): 311-312. DOI: 10.1038/ng0498-311. |
| 39. | Jacobson SG, Cideciyan AV, Huang Y, et al. Retinal degenerations with truncation mutations in the cone-rod homeobox (CRX) gene[J]. Invest Ophthalmol Vis Sci, 1998, 39(12): 2417-2426. DOI: 10.1007/s004170050174. |
| 40. | Rivolta C, Peck NE, Fulton AB, et al. Novel frameshift mutations in CRX associated with Leber congenital amaurosis[J]. Hum Mutat, 2001, 18(6): 550-551. DOI: 10.1002/humu.1243. |
| 41. | Silva E, Yang JM, Li YY, et al. A CRX null mutation is associated with both Leber congenital amaurosis and a normal ocular phenotype[J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2076-2079. |
| 42. | Shen YC, Raymond PA. zebrafish cone-rod (crx) homeobox gene promotes retinogenesis[J]. Dev Biol, 2004, 269(1): 237-251. DOI: 10.1016/j.ydbio.2004.01.037. |
| 43. | Stiebel-Kalish H, Reich E, Rainy N, et al. Gucy2f zebrafish knockdown–a model for Gucy2d-related leber congenital amaurosis[J]. Eur J Hum Genet, 2012, 20(8): 884-889. DOI: 10.1038/ejhg. 2012. 10. DOI: 10.1038/ejhg.2012.10. |
| 44. | Soens ZT, Li Y, Zhao L, et al. Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1[J]. Genet Med, 2016, 18(10): 1044-1051. DOI: 10.1038/gim.2015.205. |
| 45. | van Genderen MM, Bijveld MM, Claassen YB, et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness[J]. Am J Hum Genet, 2009, 85(5): 730-736. DOI: 10.1016/j.ajhg.2009.10.012. |
| 46. | Huang YY, Haug MF, Gesemann M, et al. Novel expression patterns of metabotropic glutamate receptor 6 in the zebrafish nervous system[J/OL]. PLoS One, 2017, 7(4): e35256[2012-04-16]. https://pubmed.ncbi.nlm.nih.gov/22523578/. DOI: 10.1371/journal.pone.0035256. |
| 47. | Peachey NS, Ray TA, Florijn R, et al. GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness[J]. Am J Hum Genet, 2012, 90(2): 331-339. DOI: 10.1016/j.ajhg.2011.12.006. |
| 48. | MacDonald IM, Russell L, Chan CC. Choroideremia: new findings from ocular pathology and review of recent literature[J]. Surv Ophthalmol, 2009, 54(3): 401-407. DOI: 10.1016/j.survophthal.2009.02.008. |
| 49. | Moosajee M, Tracey-White D, Smart M, et al. Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsense-mediated zebrafish model[J]. Hum Mol Genet, 2016, 25(16): 3416-3431. DOI: 10.1093/hmg/ddw184. |
| 50. | Ross AJ, May-Simera H, Eichers ER, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates[J]. Nat Genet, 2005, 37(10): 1135-1140. DOI: 10.1038/ng1205-1381b. |
| 51. | Keller R. Shaping the vertebrate body plan by polarized embryonic cell movements[J]. Science, 2002, 298(5600): 1950-1954. DOI: 10.1126/science.1079478. |
| 52. | Stoetzel C, Laurier V, Davis EE, et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus[J]. Nat Genet, 2006, 38(5): 521-524. DOI: 10.1038/NG1771. |
| 53. | Stoetzel C, Muller J, Laurier V, et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome[J]. Am J Hum Genet, 2007, 80(1): 1-11. DOI: 10.1086/510256. |
| 54. | Leitch CC, Zaghloul NA, Davis EE, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome[J]. Nat Genet, 2008, 40(4): 443-448. DOI: 10.1038/ng.97. |
| 55. | Zaghloul NA, Liu Y, Gerdes JM, et al. Functional analyses of variants reveal a significantrole for dominant negative and common alleles in oligogenic Bardet-Biedl syndrome[J]. Proc Natl Acad Sci USA, 2010, 107(23): 10602-10607. DOI: 10.1073/pnas.1000219107. |
| 56. | Torban E, Kor C, Gros P. Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates[J]. Trends Genet, 2004, 20(11): 570-577. DOI: 10.1016/j.tig.2004.09.003. |
| 57. | Carreira-Barbosa F, Concha ML, Takeuchi M, et al. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish[J]. Development, 2003, 130(17): 4037-4046. DOI: 10.1242/dev.00567. |
| 58. | Liu YP, Bosch DG, Siemiatkowska AM, et al. Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy[J]. Ophthalmic Genet, 38(2): 127-132. DOI: 10.3109/13816810.2016.1151898. |
| 59. | Li C, Wang L, Zhang J, et al. CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stress-induced apoptosis[J]. Biochim Biophys Acta, 2014, 1842(7): 1121-1129. DOI: 10.1016/j.bbadis.2014.04.009. |
| 60. | Lee C, Wallingford JB, Gross JM. Cluap1 is essential for ciliogenesis and photoreceptor maintenance in the vertebrate eye[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4585-4592. DOI: 10.1167/iovs.14-14888. |
| 61. | 宮雪, 李志源, 時全, 等. 斑馬魚Sgo1在眼睛發育中的作用及調控機制研究[J]. 中國海洋藥物, 2024, 43(5): 62-68. DOI: 10.13400/j.cnki.cjmd.2024.05.001.Guan X, Li ZY, Shi Q, et al. Role and regulatory mechanism of zebrafish Sgo1 in eye development[J]. Chinese Marine Drugs, 2024, 43(5): 62-68. DOI: 10.13400/j.cnki.cjmd.2024.05.001. |
| 62. | 謝繽靈, 鄧慧玲, 付貴芳, 等. 斑馬魚myo7ab基因敲除品系的構建[J]. 激光生物學報, 2021, 30(3): 217-222. DOI: 10.3969/j.issn.1007-7146.2021.03.004.Xie BL, Deng HL, Fu GF, et al. The Establishment of the zebrafish myo7ab Knockout Lines[J]. Acta Laser Biology Sinica, 2021, 30(3): 217-222. DOI: 10.3969/j.issn.1007-7146.2021.03.004. |
| 63. | 郭瑞. 轉錄因子Lhx9和Lhx4在斑馬魚胚胎發生中的表達模式及其在視網膜發育中的功能研究[D]. 杭州: 浙江大學, 2020.Guo R. Expression patterns of transcription factors Lhx9 and LHX4 in zebrafish embryogenesis and their functions in retinal development[D]. Hangzhou: Zhejiang University, 2020. |
| 64. | Strachan E, Kennedy BN, O'Sullivan N. Developing a zebrafish model of dominant optic atrophy[J]. Invest Ophthalmol Vis Sci, 2022, 63(7): 1589-1593. |
| 65. | Viringipurampeer IA, Shan X, Gregory-Evans K, et al. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish[J]. Cell Death Differ, 2014, 21(5): 665-675. DOI: 10.1038/cdd.2013.191. |
| 66. | Greenlees R, Mihelec M, Yousoof S, et al. Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization[J]. Hum Mol Genet, 2015, 24(20): 5789-5804. DOI: 10.1093/hmg/ddv298. |
| 67. | Skarie JM, Link BA. FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis[J]. Invest Ophthalmol Vis Sci, 2009, 50(11): 5026-5034. DOI: 10.1167/iovs.09-3447. |
| 68. | Pierce EA, Aleman TS, Jayasundera KT, et al. Gene editing for CEP290-associated retinal degeneration[J]. N Engl J Med, 2024, 390(21): 1972-1984. DOI: 10.1056/NEJMOA2309915. |
| 69. | Blanco-Sánchez B, Clément A, Phillips JB, et al. zebrafish models of human eye and inner ear diseases[J]. Methods Cell Biol, 2017, 138: 415-467. DOI: 10.1016/bs.mcb.2016.10.006. |
- 1. Burton MJ, Ramke J, Marques AP, et al. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020[J/OL]. Lancet Glob Health, 2021, 9(4): e489-e551[2021-02-16]. https://pubmed.ncbi.nlm.nih.gov/33607016/. DOI: 10.1016/S2214-109X(20)30488-5.
- 2. 馮麗萍, 徐伊琳, 陳珣, 等. 斑馬魚視網膜微細結構及發育特征[J]. 解剖學報, 2024, 55(1): 105-112. DOI: 10.16098/j.issn.0529-1356.2024.01.015.Feng LP, Xv YL, Chen X, et al. Microstructure and developmental characteristics of zebrafish retina[J]. Acta Anatomica Sinica, 2024, 55(1): 105-112. DOI: 10.16098/j.issn.0529-1356.2024.01.015.
- 3. Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio)[J]. Nature, 1981, 291(5813): 293-296. DOI: https://doi.org/10.1038/291293a0.
- 4. 劉晨, 陳斌, 徐又佳. 斑馬魚疾病模型[J]. 中華骨質疏松和骨礦鹽疾病雜志, 2014, 7(3): 277-280. DOI: 10.3969/j.issn.1674-2591.2014.03.016.Liu C, Chen B, Xu YJ. Zebrafish as an animal model of human disease[J]. Chin J Osteoporos Bone Miner Res, 2014, 7(3): 277-280. DOI: 10.3969/j.issn.1674-2591.2014.03.016.
- 5. 劉延英. 斑馬魚模型在神經退行性疾病研究中的應用進展[J]. 中國實驗動物學報, 2023, 31(10): 1361-1367. DOI: 10.3969/j.issn.1005-4847.2023.10.014.Liu YY. Progress in the application of the zebrafish models in the study of neurodegenerative diseases[J]. Acta Laboratorium Animalis Scientia Sinica, 2023, 31(10): 1361-1367. DOI: 10.3969/j.issn.1005-4847.2023.10.014.
- 6. Fleisch VC, Neuhauss SC. Visual behavior in zebrafish[J]. zebrafish, 2006, 3(2): 191-201. DOI: 10.1089/zeb.2006.3.191.
- 7. Stella SL Jr, Geathers JS, Weber SR, et al. Neurodegeneration, Neuroprotection and Regeneration in the zebrafish retina[J/OL]. Cells, 2021, 10(3): 633[2021-03-12]. https://pubmed.ncbi.nlm.nih.gov/33809186/. DOI: 10.3390/cells10030633.
- 8. Malicki J, Pooranachandran N, Nikolaev A, et al. Analysis of the retina in the zebrafish model[J]. Methods Cell Biol, 2016, 134: 257-334. DOI: 10.1016/bs.mcb.2016.04.017.
- 9. Chhetri J, Jacobson G, Gueven N. zebrafish–on the move towards ophthalmological research[J]. Eye, 2014, 28(4): 367-380. DOI: 10.1038/eye.2014.19.
- 10. Fogerty J, Song P, Boyd P, et al. Notch inhibition promotes regeneration and immunosuppression supports cone survival in a zebrafish model of inherited retinal dystrophy[J]. J Neurosci, 2022, 42(26): 5144-5158. DOI: 10.1523/JNEUROSCI.0244-22.2022.
- 11. Sudhakaran G, Chandran A, Sreekutty AR, et al. Ophthalmic intervention of naringenin decreases vascular endothelial growth factor by counteracting oxidative stress and cellular damage in in vivo zebrafish[J/OL]. Molecules, 2023, 28(14): 5350[2023-07-12]. https://pubmed.ncbi.nlm.nih.gov/37513223/. DOI: 10.3390/molecules28145350.
- 12. Tanvir Z, Nelson RF, DeCicco-Skinner K, et al. Onemonth of hyperglycemia alters spectral responses of the zebrafish photopic ERG[J/OL]. Dis Model Mech, 2018, 11(10): dmm035220[2018-10-22]. https://pubmed.ncbi.nlm.nih.gov/30158110/. DOI: 10.1242/dmm.035220.
- 13. Ali Z, Mukwaya A, Biesemeier A, et al. Intussusceptive vascular remodeling precedes pathological neovascularization[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1402-1418. DOI: 10.1161/ATVBAHA.118.312190.
- 14. Wang S, Du S, Wang W, et al. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy[J/OL]. Biomed Pharmacother, 2020, 130: 110573[2020-07-31]. https://pubmed.ncbi.nlm.nih.gov/32745912/. DOI: 10.1016/j.biopha.2020.110573.
- 15. Lodd E, Wiggenhauser LM, Morgenstern J, et al. The combination of loss of glyoxalase1 and obesity results in hyperglycemia[J/OL]. JCI insight, 2019, 4(12): e126154[2019-06-20]. https://pubmed.ncbi.nlm.nih.gov/31217350/. DOI: 10.1172/jci.insight.126154.
- 16. Wu YC, Chang CY, Kao A, et al. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity[J/OL]. PLoS One, 2015, 10(5): e0126750[2015-05-15]. https://pubmed.ncbi.nlm.nih.gov/25978439/. DOI: 10.1371/journal.pone.0126750.
- 17. 劉敏. Norrin分泌和多聚異常導致視網膜血管病變的機制及診斷研究[D]. 成都: 電子科技大學, 2024.Liu M. Mechanism and diagnosis of retinal vasculopathy caused by abnormal secretionand multimerization of Norrin[D]. Chengdu: University of Electronic Science and Technology, 2024.
- 18. 劉希良. rpgra敲除導致斑馬魚視網膜色素變性的機制研究[D]. 武漢: 華中科技大學, 2021.Liu XL. Study on the mechanism of rpgra knockout leading to retinitis pigmentosa in zebrafish[D]. Wuhan: Huazhong University of Science and Technology, 2021.
- 19. Nash BM, Wright DC, Grigg JR, et al. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy[J]. Transl Pediatr, 2015, 4(2): 139-163. DOI: 10.3978/j.issn.2224-4336.2015.04.03.
- 20. Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations[J/OL]. Cold Spring Harb Perspect Med, 2014, 5(2): a017111[2014-10-16]. https://pubmed.ncbi.nlm.nih.gov/25324231/. DOI: 10.1101/cshperspect.a017111.
- 21. Perkins BD. zebrafish models of inherited retinal dystrophies[J]. J Transl Genet Genom, 2022, 6(1): 195-110. DOI: 10.20517/JTGG.2021.47.
- 22. 于珊珊. CERKL敲除導致斑馬魚感光細胞外節吞噬障礙, 引起視桿—視錐營養不良[D]. 武漢: 華中科技大學, 2017.Yu SS. CERKL knockdown leads to impaired phagocytosis of photoreceptor outer segments in zebrafish, causing rod cone dystrophy[D]. Wuhan: Huazhong University of Science and Technology, 2017.
- 23. Stemerdink M, Broekman S, Peters T, et al. Generationand characterization of a zebrafish model for ADGRV1-associated retinal dysfunction using CRISPR/Cas9 genome editing technology[J/OL]. Cells, 2023, 12(12): 1598[2023-06-10]. https://pubmed.ncbi.nlm.nih.gov/37371069/. DOI: 10.3390/CELLS12121598.
- 24. Liu F, Qin Y, Huang Y, et al. Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration[J/OL]. PLoS Genet, 2022, 18(3): e1009841[2022-03-04]. https://pubmed.ncbi.nlm.nih.gov/35245286/. DOI: 10.1371/JOURNAL.PGEN.1009841.
- 25. 林羽晨. Crb2a結構域在斑馬魚視網膜神經上皮細胞和晶狀體上皮細胞頂端黏附連接裝配中的調控機制研究[D]. 杭州: 浙江大學, 2020.Lin YC. Regulatory mechanism of crb2a domain in apical adherens junction assembly of zebrafish retinal neuroepithelial cells and lens epithelial cells[D]. Hangzhou: Zhejiang University, 2020.
- 26. 賈丹娜. TULP1同源基因敲除導致斑馬魚早發性視網膜色素變性[D]. 武漢: 華中科技大學, 2023.Jia DN. Tulp1 homologous gene knockout causes early-onset retinitis pigmentosa in zebrafish[D]. Wuhan: Huazhong University of Science and Technology, 2023.
- 27. 李井振. prpf31缺失導致視網膜發育缺陷及視網膜色素變性的機制研究[D]. 武漢: 華中科技大學, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002195.Li JZ. The mechanism of PRPF31 deletion causing retinal developmental defects and retinitis pigmentosa[D]. Wuhan: Huazhong University of Science and Technology, 2021.
- 28. 陳哲. 雙突變視紫紅質蛋白(Rho-R135G/G188R)轉基因斑馬魚視網膜色素變性模型的建立[D]. 北京: 北京協和醫學院, 2009.Chen Z. Establishment of a double mutant rhodopsin protein (rho-r135g/g188r) transgenic zebrafish model of retinitis pigmentosa[D]. Beijing: Peking Union Medical College, 2009.
- 29. 王曉光, 劉海軍, 張少弛, 等. 視網膜色素變性和視錐-視桿細胞營養不良患者的基因型及臨床表型分析[J]. 中華眼底病雜志, 2018, 34(6): 526-535. DOI: 10.3760/cma.j.issn.1005-1015.2018.06.002.Wang XG, Liu HJ, Zhang SC, et al. Genotype and clinical phenotype analysis in patientswith retinitis pigmentosa andcone rod dystrophy[J]. Chin J Ocul Fundus Dis, 2018, 34(6): 526-535. DOI: 10.3760/cma.j.issn.1005-1015.2018.06.002.
- 30. 任英華, 盛迅倫, 賈沁, 等. 視網膜色素變性和視錐-視桿細胞營養不良患者基因突變頻譜分析[J]. 國際眼科雜志, 2021, 21(10): 1803-1807. DOI: 10.3980/j.issn.1672-5123.2021.10.28.Ren YH, Sheng XL, Jia Q, et al. Spectrum analysis of gene mutations in retinitis pigmentosa and cone-rod dystrophy[J]. Int Eye Sci, 2021, 21(10): 1803-1807. DOI: 10.3980/j.issn.1672-5123.2021.10.28.
- 31. 周高慧. ATP1A3基因突變導致常染色體顯性視錐-視桿細胞營養不良[D]. 溫州: 溫州醫科大學, 2020.Zhou GH. Mutations in atp1a3 cause autosomal dominant cone rod dystrophy[D]. Wenzhou: Wenzhou Medical College, 2020.
- 32. Tsang SH, Sharma T. Progressive cone dystrophy and cone-Rod dystrophy (XL, AD, and AR)[J]. Adv Exp Med Biol, 2018, 1085: 53-60. DOI: 10.1007/978-3-319-95046-4_12.
- 33. Stearns G, Evangelista M, Fadool JM, et al. A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish[J]. J Neurosci, 2007, 27(50): 13866-13874. DOI: 10.1523/JNEUROSCI.3136-07.2007.
- 34. 陸兆靜. eys敲除導致斑馬魚視網膜變性的機制研究[D]. 武漢: 華中科技大學, 2017.Lu ZJ. Mechanism of eys knockdown leadingto retinal degeneration in zebrafish[D]. Wuhan: Huazhong University of Science and Technology, 2017.
- 35. Rainy N, Etzion T, Alon S, et al. Knockdownof unc119c results in visual impairment andearly-onset retinal dystrophy in zebrafish[J]. Biochem Biophys Res Commun, 2016, 473(4): 1211-1217. DOI: 10.1016/j.bbrc.2016.04.041.
- 36. den Hollander AI, Heckenlively JR, van den Born LI, et al. Leber congenital amaurosis and retinitis pigmentos with Coats-like exudative vasculopathy are associated with mutations inthe Crumbs Homologue 1 (CRB1) gene[J]. Am J Hum Genet, 2001, 69(1): 198-203. DOI: 10.1086/321263.
- 37. Freund CL, Gregory-Evans CY, Furukawa T, et al. Cone-rod dystrophy due to mutations in anovel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor[J]. Cell, 1997, 91(4): 543-553. DOI: 10.1016/S0092-8674(00)80440-7.
- 38. Freund CL, Wang QL, Chen S, et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis[J]. Nat Genet, 1998, 18(4): 311-312. DOI: 10.1038/ng0498-311.
- 39. Jacobson SG, Cideciyan AV, Huang Y, et al. Retinal degenerations with truncation mutations in the cone-rod homeobox (CRX) gene[J]. Invest Ophthalmol Vis Sci, 1998, 39(12): 2417-2426. DOI: 10.1007/s004170050174.
- 40. Rivolta C, Peck NE, Fulton AB, et al. Novel frameshift mutations in CRX associated with Leber congenital amaurosis[J]. Hum Mutat, 2001, 18(6): 550-551. DOI: 10.1002/humu.1243.
- 41. Silva E, Yang JM, Li YY, et al. A CRX null mutation is associated with both Leber congenital amaurosis and a normal ocular phenotype[J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2076-2079.
- 42. Shen YC, Raymond PA. zebrafish cone-rod (crx) homeobox gene promotes retinogenesis[J]. Dev Biol, 2004, 269(1): 237-251. DOI: 10.1016/j.ydbio.2004.01.037.
- 43. Stiebel-Kalish H, Reich E, Rainy N, et al. Gucy2f zebrafish knockdown–a model for Gucy2d-related leber congenital amaurosis[J]. Eur J Hum Genet, 2012, 20(8): 884-889. DOI: 10.1038/ejhg. 2012. 10. DOI: 10.1038/ejhg.2012.10.
- 44. Soens ZT, Li Y, Zhao L, et al. Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1[J]. Genet Med, 2016, 18(10): 1044-1051. DOI: 10.1038/gim.2015.205.
- 45. van Genderen MM, Bijveld MM, Claassen YB, et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness[J]. Am J Hum Genet, 2009, 85(5): 730-736. DOI: 10.1016/j.ajhg.2009.10.012.
- 46. Huang YY, Haug MF, Gesemann M, et al. Novel expression patterns of metabotropic glutamate receptor 6 in the zebrafish nervous system[J/OL]. PLoS One, 2017, 7(4): e35256[2012-04-16]. https://pubmed.ncbi.nlm.nih.gov/22523578/. DOI: 10.1371/journal.pone.0035256.
- 47. Peachey NS, Ray TA, Florijn R, et al. GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness[J]. Am J Hum Genet, 2012, 90(2): 331-339. DOI: 10.1016/j.ajhg.2011.12.006.
- 48. MacDonald IM, Russell L, Chan CC. Choroideremia: new findings from ocular pathology and review of recent literature[J]. Surv Ophthalmol, 2009, 54(3): 401-407. DOI: 10.1016/j.survophthal.2009.02.008.
- 49. Moosajee M, Tracey-White D, Smart M, et al. Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsense-mediated zebrafish model[J]. Hum Mol Genet, 2016, 25(16): 3416-3431. DOI: 10.1093/hmg/ddw184.
- 50. Ross AJ, May-Simera H, Eichers ER, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates[J]. Nat Genet, 2005, 37(10): 1135-1140. DOI: 10.1038/ng1205-1381b.
- 51. Keller R. Shaping the vertebrate body plan by polarized embryonic cell movements[J]. Science, 2002, 298(5600): 1950-1954. DOI: 10.1126/science.1079478.
- 52. Stoetzel C, Laurier V, Davis EE, et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus[J]. Nat Genet, 2006, 38(5): 521-524. DOI: 10.1038/NG1771.
- 53. Stoetzel C, Muller J, Laurier V, et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome[J]. Am J Hum Genet, 2007, 80(1): 1-11. DOI: 10.1086/510256.
- 54. Leitch CC, Zaghloul NA, Davis EE, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome[J]. Nat Genet, 2008, 40(4): 443-448. DOI: 10.1038/ng.97.
- 55. Zaghloul NA, Liu Y, Gerdes JM, et al. Functional analyses of variants reveal a significantrole for dominant negative and common alleles in oligogenic Bardet-Biedl syndrome[J]. Proc Natl Acad Sci USA, 2010, 107(23): 10602-10607. DOI: 10.1073/pnas.1000219107.
- 56. Torban E, Kor C, Gros P. Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates[J]. Trends Genet, 2004, 20(11): 570-577. DOI: 10.1016/j.tig.2004.09.003.
- 57. Carreira-Barbosa F, Concha ML, Takeuchi M, et al. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish[J]. Development, 2003, 130(17): 4037-4046. DOI: 10.1242/dev.00567.
- 58. Liu YP, Bosch DG, Siemiatkowska AM, et al. Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy[J]. Ophthalmic Genet, 38(2): 127-132. DOI: 10.3109/13816810.2016.1151898.
- 59. Li C, Wang L, Zhang J, et al. CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stress-induced apoptosis[J]. Biochim Biophys Acta, 2014, 1842(7): 1121-1129. DOI: 10.1016/j.bbadis.2014.04.009.
- 60. Lee C, Wallingford JB, Gross JM. Cluap1 is essential for ciliogenesis and photoreceptor maintenance in the vertebrate eye[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4585-4592. DOI: 10.1167/iovs.14-14888.
- 61. 宮雪, 李志源, 時全, 等. 斑馬魚Sgo1在眼睛發育中的作用及調控機制研究[J]. 中國海洋藥物, 2024, 43(5): 62-68. DOI: 10.13400/j.cnki.cjmd.2024.05.001.Guan X, Li ZY, Shi Q, et al. Role and regulatory mechanism of zebrafish Sgo1 in eye development[J]. Chinese Marine Drugs, 2024, 43(5): 62-68. DOI: 10.13400/j.cnki.cjmd.2024.05.001.
- 62. 謝繽靈, 鄧慧玲, 付貴芳, 等. 斑馬魚myo7ab基因敲除品系的構建[J]. 激光生物學報, 2021, 30(3): 217-222. DOI: 10.3969/j.issn.1007-7146.2021.03.004.Xie BL, Deng HL, Fu GF, et al. The Establishment of the zebrafish myo7ab Knockout Lines[J]. Acta Laser Biology Sinica, 2021, 30(3): 217-222. DOI: 10.3969/j.issn.1007-7146.2021.03.004.
- 63. 郭瑞. 轉錄因子Lhx9和Lhx4在斑馬魚胚胎發生中的表達模式及其在視網膜發育中的功能研究[D]. 杭州: 浙江大學, 2020.Guo R. Expression patterns of transcription factors Lhx9 and LHX4 in zebrafish embryogenesis and their functions in retinal development[D]. Hangzhou: Zhejiang University, 2020.
- 64. Strachan E, Kennedy BN, O'Sullivan N. Developing a zebrafish model of dominant optic atrophy[J]. Invest Ophthalmol Vis Sci, 2022, 63(7): 1589-1593.
- 65. Viringipurampeer IA, Shan X, Gregory-Evans K, et al. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish[J]. Cell Death Differ, 2014, 21(5): 665-675. DOI: 10.1038/cdd.2013.191.
- 66. Greenlees R, Mihelec M, Yousoof S, et al. Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization[J]. Hum Mol Genet, 2015, 24(20): 5789-5804. DOI: 10.1093/hmg/ddv298.
- 67. Skarie JM, Link BA. FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis[J]. Invest Ophthalmol Vis Sci, 2009, 50(11): 5026-5034. DOI: 10.1167/iovs.09-3447.
- 68. Pierce EA, Aleman TS, Jayasundera KT, et al. Gene editing for CEP290-associated retinal degeneration[J]. N Engl J Med, 2024, 390(21): 1972-1984. DOI: 10.1056/NEJMOA2309915.
- 69. Blanco-Sánchez B, Clément A, Phillips JB, et al. zebrafish models of human eye and inner ear diseases[J]. Methods Cell Biol, 2017, 138: 415-467. DOI: 10.1016/bs.mcb.2016.10.006.

