| 1. |
Fleckenstein M, Schmitz-Valckenberg S, Chakravarthy U. Age-related macular degeneration: a review[J]. JAMA, 2024, 331(2): 147-157. DOI: 10.1001/jama.2023.26074.
|
| 2. |
Gonzalez A, Khurshid G. Treatment of retinal pigment epithelial detachment secondary to exudative age-related macular degeneration[J]. Am J Ophthalmol Case Rep, 2018, 9: 18-22. DOI: 10.1016/j.ajoc.2017.12.004.
|
| 3. |
Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group[J]. Ophthalmology, 2020, 127(5): 616-636. DOI: 10.1016/j.ophtha.2019.11.004.
|
| 4. |
Karampelas M, Malamos P, Petrou P, et al. Retinal pigment epithelial detachment in age-related macular degeneration[J]. Ophthalmol Ther, 2020, 9(4): 739-756. DOI: 10.1007/s40123-020-00291-5.
|
| 5. |
Leitritz M, Gelisken F, Inhoffen W, et al. Can the risk of retinal pigment epithelium tears after bevacizumab treatment be predicted? An optical coherence tomography study[J]. Eye (Lond), 2008, 22(12): 1504-1507. DOI: 10.1038/eye.2008.145.
|
| 6. |
Chan CK, Abraham P, Meyer CH, et al. Optical coherence tomography-measured pigment epithelial detachment height as a predictor for retinal pigment epithelial tears associated with intravitreal bevacizumab injections[J]. Retina, 2010, 30(2): 203-211. DOI: 10.1097/IAE.0b013e3181babda5.
|
| 7. |
Cheong KX, Teo KYC, Cheung CMG. Influence of pigment epithelial detachment on visual acuity in neovascular age-related macular degeneration[J]. Surv Ophthalmol, 2021, 66(1): 68-97. DOI: 10.1016/j.survophthal.2020.05.003.
|
| 8. |
Yao T, Yang Y, Jin X, et al. Intraocular pharmacokinetics of anti-vascular endothelial growth factor agents by intraoperative subretinal versus intravitreal injection in silicone oil-filled eyes of proliferative diabetic retinopathy: a randomized controlled pilot study[J/OL]. Acta Ophthalmol, 2020, 98(7): e795-e800[2020-02-29]. https://pubmed.ncbi.nlm.nih.gov/32114709/. DOI: 10.1111/aos.14386.
|
| 9. |
Rogers FB. Medical subject headings[J]. Bull Med Libr Assoc, 1963, 51(1): 114-116.
|
| 10. |
de Massougnes S, Dirani A, Mantel I. Good visual outcome at 1 year in neovascular age-related macular degeneration with pigment epithelium detachment: factors influencing the treatment response[J]. Retina, 2018, 38(4): 717-724. DOI: 10.1097/IAE.0000000000001613.
|
| 11. |
Malik D, Tarek M, Caceres Del Carpio J, et al. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture[J]. Br J Ophthalmol, 2014, 98 Suppl 1(Suppl 1): 11-16. DOI: 10.1136/bjophthalmol-2014-305302.
|
| 12. |
Ferrara N, Gerber H, LeCouter J. The biology of VEGF and its receptors[J]. Nat Med, 2003, 9(6): 669-676. DOI: 10.1038/nm0603-669.
|
| 13. |
Yao T, Jin X, Yang Y, et al. Intraocular pharmacokinetics and safety of subretinal injection compared with intravitreal application of Conbercept in vitrectomized rabbit eyes[J/OL]. J Ophthalmol, 2020, 2020: 2674780[2020-03-23]. https://pubmed.ncbi.nlm.nih.gov/32280518/. DOI: 10.1155/2020/2674780.
|
| 14. |
Avci R, Mavi Yildiz A, Cinar E, et al. Subretinal coapplication of tissue plasminogen activator and Bevacizumab with concurrent pneumatic displacement for submacular hemorrhages secondary to neovascular age-related macular degeneration[J]. Turk J Ophthalmol, 2021, 51(1): 38-44. DOI: 10.4274/tjo.galenos.2020.72540.
|
| 15. |
Johnson C J, Berglin L, Chrenek MA, et al. Technical brief: subretinal injection and electroporation into adult mouse eyes[J]. Mol Vis, 2008, 14: 2211-2226.
|