| 1. |
Kivel? T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death[J]. Br J Ophthalmol, 2009, 93(9): 1129-1131. DOI: 10.1136/bjo.2008.150292.
|
| 2. |
Zhao J, Li S, Shi J, et al. Clinical presentation and group classification of newly diagnosed intraocular retinoblastoma in China[J]. Br J Ophthalmol, 2011, 95(10): 1372-1375. DOI: 10.1136/bjo.2010.191130.
|
| 3. |
中華醫學會眼科學分會眼底病學組, 中華醫學會兒科學分會眼科學組, 中華醫學會眼科學分會眼整形眼眶病學組. 中國視網膜母細胞瘤診斷和治療指南(2019年)[J]. 中華眼科雜志, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003.Ophthalmology Group of Chinese Ophthalmological Society, Ophthalmology Group of Chinese Pediatric Society, Ocular Plastic and Orbital Disease Group of Chinese Ophthalmological Society. Guidelines for the diagnosis and treatment of retinoblastoma in China(2019)[J]. Chin J Ophthalmol, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003.
|
| 4. |
Naseripour M. "Retinoblastoma survival disparity": the expanding horizon in developing countries[J]. Saudi J Ophthalmol, 2012, 26(2): 157-161. DOI: 10.1016/j.sjopt.2012.02.003.
|
| 5. |
Peeler CE, Gonzalez E. Retinoblastoma[J/OL]. N Engl J Med, 2022, 386(25): 2412[2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/35731655/. DOI: 10.1056/NEJMicm2118356.
|
| 6. |
楊紅, Harald Schilling, Rudolf Effert, 等. 視網膜母細胞瘤色素上皮-脈絡膜分期與視神經浸潤的關系[J]. 華中科技大學學報(醫學版), 2002, 31(5): 586-588. DOI: 10.3870/j.issn.1672-0741.2002.05.034.Yang H, Harald Schilling, Rudolf Effer, et al. Relationship between pigment epithelium-choroid stage and optic invasion in retinoblastoma[J]. J Huazhong Univ Sci Tech[Health Sci], 2002, 31(5): 586-588. DOI: 10.3870/j.issn.1672-0741.2002.05.034.
|
| 7. |
Shields CL, Bas Z, Laiton A, et al. Retinoblastoma: emerging concepts in genetics, global disease burden, chemotherapy outcomes, and psychological impact[J]. Eye (Lond), 2023, 37(5): 815-822. DOI: 10.1038/s41433-022-01980-0.
|
| 8. |
Yousef YA, Mohammad M, Jaradat I, et al. The role of external beam radiation therapy for retinoblastoma after failure of combined chemoreduction and focal consolidation therapy[J]. Ophthalmic Genet, 2020, 41(1): 20-25. DOI: 10.1080/13816810.2020.1719519.
|
| 9. |
Berliere M, Piette N, Bernard M, et al. Hypnosis sedation reduces the duration of different side effects of cancer treatments in breast cancer patients receiving neoadjuvant chemotherapy[J/OL]. Cancers (Basel), 2021, 13(16): 4147[2021-08-18]. https://pubmed.ncbi.nlm.nih.gov/34439301/. DOI: 10.3390/cancers13164147.
|
| 10. |
Scelfo C, Francis JH, Khetan V, et al. An international survey of classification and treatment choices for group D retinoblastoma[J]. Int J Ophthalmol, 2017, 10(6): 961-967. DOI: 10.18240/ijo.2017.06.20.
|
| 11. |
Kim KH, Roberts CW. Targeting EZH2 in cancer[J]. Nat Med, 2016, 22(2): 128-134. DOI: 10.1038/nm.4036.
|
| 12. |
Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics[J]. Mutat Res, 2008, 647(1-2): 21-29. DOI: 10.1016/j.mrfmmm.2008.07.010.
|
| 13. |
Yao Y, Hu H, Yang Y, et al. Downregulation of enhancer of zeste homolog 2 (EZH2) is essential for the induction of autophagy and apoptosis in colorectal cancer dells[J/OL]. Genes (Basel), 2016, 7(10): 83[2016-10-03]. https://pubmed.ncbi.nlm.nih.gov/27706111/. DOI: 10.3390/genes7100083.
|
| 14. |
Batool A, Jin C, Liu YX. Role of EZH2 in cell lineage determination and relative signaling pathways[J]. Front Biosci (Landmark Ed), 2019, 24(5): 947-960. DOI: 10.2741/4760.
|
| 15. |
閆慧, 張磊. 視網膜母細胞瘤轉移機制及基因治療的研究進展[J]. 同濟大學學報(醫學版), 2016, 37(1): 129-132. DOI: 10.16118/j.1008-0392.2016.01.028.Yan H, Zhang L. Progress on mechanism of retinoblastoma and related gene therapies[J]. Journal of Tongji University (Medical Science), 2016, 37(1): 129-132. DOI: 10.16118/j.1008-0392.2016.01.028.
|
| 16. |
Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment[J/OL]. J Hematol Oncol, 2020, 13(1): 104[2020-07-28]. https://pubmed.ncbi.nlm.nih.gov/32723346/. DOI:10.1186/s13045-020-00937-8.
|
| 17. |
Lin Z, Tang L, Chen S, et al. EZH2 expression in retinoblastoma: a potential therapeutic target[J]. Ophthalmic Res, 2023, 66(1): 1014-1019. DOI: 10.1159/000531530.
|
| 18. |
Entezari M, Taheriazam A, Paskeh MDA, et al. The pharmacological and biological importance of EZH2 signaling in lung cancer[J/OL]. Biomed Pharmacother, 2023, 160: 114313[2023-04]. https://pubmed.ncbi.nlm.nih.gov/36738498/. DOI: 10.1016/j.biopha.2023.114313.
|
| 19. |
Lachat C, Boyer-Guittaut M, Peixoto P, et al. Epigenetic regulation of EMT (epithelial to mesenchymal transition) and tumor aggressiveness: a view on paradoxical roles of KDM6B and EZH2[J/OL]. Epigenomes, 2018, 3(1): 1[2018-12-20]. https://pubmed.ncbi.nlm.nih.gov/34991274/. DOI: 10.3390/epigenomes3010001.
|
| 20. |
Suresh Babu V, Bisht A, Mallipatna A, et al. Enhanced epithelial-to-mesenchymal transition and chemoresistance in advanced retinoblastoma tumors is driven by miR-181a[J/OL]. Cancers (Basel), 2022, 14(20): 5124[2022-10-19]. https://pubmed.ncbi.nlm.nih.gov/36291907/. DOI: 10.3390/cancers14205124.
|
| 21. |
Dockerill M, Gregson C, O' Donovan DH. Targeting PRC2 for the treatment of cancer: an updated patent review (2016-2020)[J]. Expert Opin Ther Pat, 2021, 31(2): 119-135. DOI: 10.1080/13543776.2021.1841167.
|
| 22. |
Fioravanti R, Stazi G, Zwergel C, et al. Six years (2012-2018) of researches on catalytic EZH2 inhibitors: the boom of the 2-pyridone compounds[J]. Chem Rec, 2018, 18(12): 1818-1832. DOI: 10.1002/tcr.201800091.
|
| 23. |
Fobare S, Elgamal OA, Wunderlich M, et al. Inhibition of enhancer of zeste homolog 2 induces blast differentiation, impairs engraftment and prolongs survival in murine models of acute myeloid leukemia[J/OL]. Cancers (Basel), 2024, 16(3): 569[2024-01-29]. https://pubmed.ncbi.nlm.nih.gov/38339323/. DOI: 10.3390/cancers16030569.
|
| 24. |
Stacchiotti S, Zuco V, Tortoreto M, et al. Comparative assessment of antitumor effects and autophagy induction as a resistance mechanism by cytotoxics and EZH2 inhibition in INI1-negative epithelioid sarcoma patient-derived xenograft[J/OL]. Cancers (Basel), 2019, 11(7): 1015[2019-07]. https://pubmed.ncbi.nlm.nih.gov/31331120/. DOI: 10.3390/cancers11071015.
|
| 25. |
Clevers H. Wnt/beta-catenin signaling in development and disease[J]. Cell, 2006, 127(3): 469-480. DOI: 10.1016/j.cell.2006.10.018.
|
| 26. |
Zhang M, Weng W, Zhang Q, et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5[J/OL]. J Hematol Oncol, 2018, 11(1): 113[2018-09-05]. https://pubmed.ncbi.nlm.nih.gov/30185232/. DOI: 10.1186/s13045-018-0656-7.
|
| 27. |
Cao MQ, You AB, Zhu XD, et al. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a[J/OL]. J Hematol Oncol, 2018, 11(1): 12[2018-01-24]. https://pubmed.ncbi.nlm.nih.gov/29361949/. DOI: 10.1186/s13045-018-0555-y.
|
| 28. |
Ge X, Wang X. Role of Wnt canonical pathway in hematological malignancies[J/OL]. J Hematol Oncol, 2010, 3: 33[2020-09-15]. https://pubmed.ncbi.nlm.nih.gov/20843302/. DOI: 10.1186/1756-8722-3-33.
|
| 29. |
Wang W, Smits R, Hao H, et al. Wnt/β-catenin signaling in liver cancers[J/OL]. Cancers (Basel), 2019, 11(7): 926[2019-07-02]. https://pubmed.ncbi.nlm.nih.gov/31269694/. DOI:10.3390/cancers11070926.
|
| 30. |
Bahrami A, Amerizadeh F, ShahidSales S, et al. Therapeutic potential of targeting Wnt/β-catenin pathway in treatment of colorectal cancer: rational and progress[J]. J Cell Biochem, 2017, 118(8): 1979-1983. DOI: 10.1002/jcb.25903.
|
| 31. |
Liang G, Han L, Qu M, et al. Down-regulation of EZH2 genes targeting RUNX3 affects proliferation, invasion, and metastasis of human colon cancer cells by Wnt/β-catenin signaling pathway[J]. Aging (Albany NY), 2023, 15(23): 13655-13668. DOI: 10.18632/aging.205197.
|
| 32. |
Campolo M, Scuderi SA, Filippone A, et al. EZH2 inhibition to counteract oral cancer progression through Wnt/β-catenin pathway modulation[J/OL]. Pharmaceuticals (Basel), 2024, 17(8): 1102[2024-08-22]. https://pubmed.ncbi.nlm.nih.gov/39204206/. DOI: 10.3390/ph17081102.
|
| 33. |
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349. DOI: 10.1038/nature09784.
|
| 34. |
Zhang L, Qu J, Qi Y, et al. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation[J/OL]. Nat Commun, 2022, 13(1): 2543[2022-05-10]. https://pubmed.ncbi.nlm.nih.gov/35538070/. DOI: 10.1038/s41467-022-30105-0.
|
| 35. |
Xu J, Wang Z, Lu W, et al. EZH2 promotes gastric cancer cells proliferation by repressing p21 expression[J/OL]. Pathol Res Pract, 2019, 215(6): 152374[2019-03-04]. https://pubmed.ncbi.nlm.nih.gov/30952377/. DOI: 10.1016/j.prp.2019.03.003.
|
| 36. |
Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer[J]. Nat Rev Cancer, 2015, 15(5): 276-289. DOI: 10.1038/nrc3916.
|
| 37. |
Nomura M, Nomura N, Newcomb EW, et al. Geldanamycin induces mitotic catastrophe and subsequent apoptosis in human glioma cells[J]. J Cell Physiol, 2004, 201(3): 374-384. DOI: 10.1002/jcp.20090.
|
| 38. |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.
|
| 39. |
Kaundal B, Srivastava AK, Dev A, et al. Nanoformulation of EPZ011989 attenuates EZH2-c-Myb epigenetic interaction by proteasomal degradation in acute myeloid leukemia[J]. Mol Pharm, 2020, 17(2): 604-621. DOI: 10.1021/acs.molpharmaceut.9b01071.
|
| 40. |
Song P, Gao Z, Bao Y, et al. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy[J/OL]. J Hematol Oncol, 2024, 17(1): 46[2024-06-18]. https://pubmed.ncbi.nlm.nih.gov/38886806/. DOI: 10.1186/s13045-024-01563-4.
|
| 41. |
Pak S, Park S, Kim Y, et al. The small molecule WNT/β-catenin inhibitor CWP232291 blocks the growth of castration-resistant prostate cancer by activating the endoplasmic reticulum stress pathway[J/OL]. J Exp Clin Cancer Res, 2019, 38(1): 342[2019-10-31]. https://pubmed.ncbi.nlm.nih.gov/31387608/. DOI: 10.1186/s13046-019-1342-5.
|
| 42. |
Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1[J/OL]. EMBO Rep, 2019, 20(4): e47638[2019-03-14]. https://pubmed.ncbi.nlm.nih.gov/30833345/. DOI: 10.15252/embr.201847638.
|
| 43. |
Lee SH, Koo BS, Kim JM, et al. Wnt/β-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4[J]. J Pathol, 2014, 234(1): 99-107. DOI: 10.1002/path.4383.
|
| 44. |
Xu H, Zhao G, Zhang Y, et al. Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2 [J/OL]. Stem Cell Res Ther, 2019, 10(1): 381[2019-12-16]. https://pubmed.ncbi.nlm.nih.gov/31842978/. DOI: 10.1186/s13287-019-1446-z.
|
| 45. |
Ali M, Stone D, Laknaur A, et al. EZH2 activates Wnt/β-catenin signaling in human uterine fibroids, which is inhibited by the natural compound methyl jasmonate[J]. F S Sci, 2023, 4(3): 239-256. DOI: 10.1016/j.xfss.2023.05.003.
|
| 46. |
Wu T, Wang LN, Tang DR, et al. SOST silencing promotes proliferation and invasion and reduces apoptosis of retinoblastoma cells by activating Wnt/β-catenin signaling pathway[J]. Gene Ther, 2017, 24(7): 399-407. DOI: 10.1038/gt.2017.31.
|
| 47. |
李華, 周德俊. Wnt2/β-catenin信號通路及其在腫瘤中的作用[J]. 廣東醫學, 2015, 36(2): 320-323. DOI: 10.13820/j.cnki.gdyx.2015.02.043.Li H, Zhou DJ. The Wnt2/β-catenin signaling pathway and its role in tumors[J]. Guangdong Medical Journal, 2015, 36(2): 320-323. DOI: 10.13820/j.cnki.gdyx.2015.02.043.
|
| 48. |
Sharma A, Yang WL, Ochani M, et al. Mitigation of sepsis-induced inflammatory responses and organ injury through targeting Wnt/β-catenin signaling[J/OL]. Sci Rep, 2017, 7(1): 9235[2017-08-23]. https://pubmed.ncbi.nlm.nih.gov/28835626/. DOI: 10.1038/s41598-017-08711-6.
|
| 49. |
Vallée A. Neuroinflammation in schizophrenia: the key role of the WNT/β-catenin pathway[J/OL]. Int J Mol Sci, 2022, 23(5): 2810[2022-03-04]. https://pubmed.ncbi.nlm.nih.gov/35269952/. DOI: 10.3390/ijms23052810.
|
| 50. |
白海霞, 李彬. 視網膜母細胞瘤動物模型的研究進展[J]. 中華眼科雜志, 2014, 50(10): 793-797. DOI: 10.3760/cma.j.issn.0412-4081.2014.10.019.Bai HX, Li B. Research advances of animal models of retinoblastoma[J]. Chin J Ophthalmol, 2014, 50(10): 793-797. DOI: 10.3760/cma.j.issn.0412-4081.2014.10.019.
|