| 1. |
Hu ML, Edwards TL, O'Hare F, et al. Gene therapy for inherited retinal diseases: progress and possibilities[J]. Clin Exp Optom, 2021, 104(4): 444-454. DOI: 10.1080/08164622.2021.1880863.
|
| 2. |
Hanany M, Shalom S, Ben-Yosef T, et al. Comparison of worldwide disease prevalence and genetic prevalence of inherited retinal diseases and variant interpretation considerations[J/OL]. Cold Spring Harb Perspect Med, 2024, 14(2): a041277[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/37460155/. DOI: 10.1101/cshperspect.a041277.
|
| 3. |
Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases. DOI: Therapeutics, clinical trials and end points-a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 270-288. DOI: 10.1111/ceo.13917.
|
| 4. |
Ben-Yosef T. Inherited retinal diseases[J/OL]. Int J Mol Sci, 2022, 23(21): 13467[2022-11-03]. https://pubmed.ncbi.nlm.nih.gov/36362249/. DOI: 10.3390/ijms232113467.
|
| 5. |
Georgiou M, Robson AG, Fujinami K, et al. Phenotyping and genotyping inherited retinal diseases: molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes[J/OL]. Prog Retin Eye Res, 2024, 100: 101244[2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/38278208/. DOI: 10.1016/j.preteyeres.2024.101244.
|
| 6. |
Liu MM, Zack DJ. Alternative splicing and retinal degeneration[J]. Clin Genet, 2013, 84(2): 142-149. DOI: 10.1111/cge.12181.
|
| 7. |
Khan M, Cornelis SS, Pozo-Valero MD, et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics[J]. Genet Med, 2020, 22(7): 1235-1246. DOI: 1235-46.10.1038/s41436-020-0787-4. DOI: 10.1038/s41436-020-0787-4.
|
| 8. |
Love SL, Emerson JD, Koide K, et al. Pre-mRNA splicing-associated diseases and therapies[J]. RNA Biol, 2023, 20(1): 525-538. DOI: 10.1080/15476286.2023.2239601.
|
| 9. |
El Marabti E, Malek J, Younis I. Minor intron splicing from basic science to disease[J/OL]. Int J Mol Sci, 2021, 22(11): 6062[2021-06-04]. https://pubmed.ncbi.nlm.nih.gov/34199764/. DOI: 10.3390/ijms22116062.
|
| 10. |
Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome[J]. Annu Rev Biochem, 2020, 89: 359-388. DOI: 10.1146/annurev-biochem-091719-064225.
|
| 11. |
Aísa-Marín I, García-Arroyo R, Mirra S, et al. The alter retina: alternative splicing of retinal genes in health and disease[J/OL]. Int J Mol Sci, 2021, 22(4): 1855[2021-02-12]. https://pubmed.ncbi.nlm.nih.gov/33673358/. DOI: 10.3390/ijms22041855.
|
| 12. |
Delmaghani S, El-Amraoui A. The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification[J]. Hum Genet, 2022, 141(3-4): 709-735. DOI: 10.1007/s00439-022-02448-7.
|
| 13. |
Mansard L, Baux D, Vaché C, et al. The study of a 231 French patient cohort significantly extends the mutational spectrum of the two major usher genes MYO7A and USH2A[J/OL]. Int J Mol Sci, 2021, 22(24): 13294[2021-12-10]. https://pubmed.ncbi.nlm.nih.gov/34948090/. DOI: 10.3390/ijms222413294.
|
| 14. |
De Angeli P, Spaag S, Shliaga S, et al. Single-guide RNA Cas9 and enhanced-deletion Cas9 rescue a recurrent USH2A-related splicing defect[J/OL]. Mol Ther Nucleic Acids, 2025, 36(2): 102523[2025-03-21]. https://pubmed.ncbi.nlm.nih.gov/40235854/. DOI: 10.1016/j.omtn.2025.102523.
|
| 15. |
Tian L, Chen C, Song Y, et al. Phenotype-based genetic analysis reveals missing heritability of ABCA4-related retinopathy: deep intronic variants and copy number variations[J/OL]. Invest Ophthalmol Vis Sci, 2022, 63(6): 5[2022-06-01]. https://pubmed.ncbi.nlm.nih.gov/35657619/. DOI: 10.1167/iovs.63.6.5.
|
| 16. |
Leroy BP, Birch DG, Duncan JL, et al. Leber congenital amaurosis due to cep290 mutations-severe vision impairment with a high unmet medical need: a review[J]. Retina, 2021, 41(5): 898-907. DOI: 10.1097/IAE.0000000000003133.
|
| 17. |
Valkenburg D, van Cauwenbergh C, Lorenz B, et al. Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c. 2991+1655A>G mutation in CEP290[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4384-4391. DOI: 10.1167/iovs.18-24817.
|
| 18. |
Gagliardi M, Ashizawa AT. The Challenges and strategies of antisense oligonucleotide drug delivery[J/OL]. Biomedicines, 2021, 9(4): 433[2021-04-16]. https://pubmed.ncbi.nlm.nih.gov/33923688/. DOI: 10.3390/biomedicines9040433.
|
| 19. |
Sang A, Zhuo S, Bochanis A, et al. Mechanisms of action of the US food and drug administration-approved antisense oligonucleotide drugs[J]. BioDrugs, 2024, 38(4): 511-526. DOI: 10.1007/s40259-024-00665-2.
|
| 20. |
Kaltak M, de Bruijn P, Piccolo D, et al. Antisense oligonucleotide therapy corrects splicing in the common Stargardt disease type 1-causing variant ABCA4 c. 5461-10T>C[J]. Mol Ther Nucleic Acids, 2023, 31: 674-688. DOI: 10.1016/j.omtn.2023.02.020.
|
| 21. |
Egli M, Manoharan M. Chemistry, structure and function of approved oligonucleotide therapeutics[J]. Nucleic Acids Res, 2023, 51(6): 2529-2573. DOI: 10.1093/nar/gkad067.
|
| 22. |
Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial[J]. Nat Med, 2022, 28(5): 1014-1021. DOI: 10.1038/s41591-022-01755-w.
|
| 23. |
Dulla K, Aguila M, Lane A, et al. Splice-modulating oligonucleotide QR-110 restores CEP290 mRNA and function in human c. 2991+1655A>G LCA10 models[J]. Mol Ther Nucleic Acids, 2018, 12: 730-740. DOI: 10.1016/j.omtn.2018.07.010.
|
| 24. |
Burnight ER, Giacalone JC, Cooke JA, et al. CRISPR-Cas9 genome engineering: treating inherited retinal degeneration[J]. Prog Retin Eye Res, 2018, 65: 28-49. DOI: 10.1016/j.preteyeres.2018.03.003.
|
| 25. |
Wiley LA, Burnight ER, Kaalberg EE, et al. Assessment of adeno-associated virus serotype tropism in human retinal explants[J]. Hum Gene Ther, 2018, 29(4): 424-436. DOI: 10.1089/hum.2017.179.
|
| 26. |
Meng X, Jia R, Zhao X, et al. In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment[J/OL]. Nat Commun, 2024, 15(1): 3773[2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/38710738/. DOI: 10.1038/s41467-024-48092-9.
|
| 27. |
Ajiro M, Awaya T, Kim YJ, et al. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia[J/OL]. Nat Commun, 2021, 112(1): 4507[2021-07-23]. https://pubmed.ncbi.nlm.nih.gov/34301951/. DOI: 10.1038/s41467-021-24705-5.
|
| 28. |
Nishio H, Niba ETE, Saito T, et al. Spinal muscular atrophy: the past, present, and future of diagnosis and treatment[J/OL]. Int J Mol Sci, 2023, 24(15): 11939[2023-07-26]. https://pubmed.ncbi.nlm.nih.gov/37569314/. DOI: 10.3390/ijms241511939.
|
| 29. |
Yeo CJJ, Tizzano EF, Darras BT. Challenges and opportunities in spinal muscular atrophy therapeutics[J/OL]. Lancet Neurol, 2024, 23(3): e7[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38267192/. DOI: 10.1016/S1474-4422(24)00050-4.
|
| 30. |
Doi A, Delaney C, Tanner D, et al. RNA exon editing: Splicing the way to treat human diseases[J/OL]. Mol Ther Nucleic Acids, 2024, 35(3): 102311[2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/39281698/. DOI: 10.1016/j.omtn.2024.102311.
|
| 31. |
Berger A, Maire S, Gaillard MC, et al. mRNA trans-splicing in gene therapy for genetic diseases[J]. Wiley Interdiscip Rev RNA, 2016, 7(4): 487-498. DOI: 10.1002/wrna.1347.
|
| 32. |
Dooley SJ, McDougald DS, Fisher KJ, et al. Spliceosome-mediated pre-mRNA trans-splicing can repair CEP290 mRNA[J]. Mol Ther Nucleic Acids, 2018, 12: 294-308. DOI: 10.1016/j.omtn.2018.05.014.
|
| 33. |
Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, et al. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes[J/OL]. Clin Transl Med, 2024, 14(3): e1607[2024-03-01]. https://pubmed.ncbi.nlm.nih.gov/38488469/. DOI: 10.1002/ctm2.1607.
|